Controllability and Inverse Problems for Parabolic Systems with Dynamic Boundary Conditions

S. E. Chorfi, L. Maniar
{"title":"Controllability and Inverse Problems for Parabolic Systems with Dynamic Boundary Conditions","authors":"S. E. Chorfi, L. Maniar","doi":"arxiv-2409.10302","DOIUrl":null,"url":null,"abstract":"This review surveys previous and recent results on null controllability and\ninverse problems for parabolic systems with dynamic boundary conditions. We aim\nto demonstrate how classical methods such as Carleman estimates can be extended\nto prove null controllability for parabolic systems and Lipschitz stability\nestimates for inverse problems with dynamic boundary conditions of surface\ndiffusion type. We mainly focus on the substantial difficulties compared to\nstatic boundary conditions. Finally, some conclusions and open problems will be\nmentioned.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This review surveys previous and recent results on null controllability and inverse problems for parabolic systems with dynamic boundary conditions. We aim to demonstrate how classical methods such as Carleman estimates can be extended to prove null controllability for parabolic systems and Lipschitz stability estimates for inverse problems with dynamic boundary conditions of surface diffusion type. We mainly focus on the substantial difficulties compared to static boundary conditions. Finally, some conclusions and open problems will be mentioned.
具有动态边界条件的抛物线系统的可控性和逆问题
这篇综述综述了关于具有动态边界条件的抛物线系统的空可控性和逆问题的以往和最新成果。我们旨在证明如何将经典方法(如 Carleman 估计)扩展到证明抛物线系统的空可控性,以及如何证明具有表面扩散类型动态边界条件的逆问题的 Lipschitz 稳定性估计。我们主要关注与静态边界条件相比存在的实质性困难。最后,将提及一些结论和有待解决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信