Online Nonconvex Bilevel Optimization with Bregman Divergences

Jason Bohne, David Rosenberg, Gary Kazantsev, Pawel Polak
{"title":"Online Nonconvex Bilevel Optimization with Bregman Divergences","authors":"Jason Bohne, David Rosenberg, Gary Kazantsev, Pawel Polak","doi":"arxiv-2409.10470","DOIUrl":null,"url":null,"abstract":"Bilevel optimization methods are increasingly relevant within machine\nlearning, especially for tasks such as hyperparameter optimization and\nmeta-learning. Compared to the offline setting, online bilevel optimization\n(OBO) offers a more dynamic framework by accommodating time-varying functions\nand sequentially arriving data. This study addresses the online\nnonconvex-strongly convex bilevel optimization problem. In deterministic\nsettings, we introduce a novel online Bregman bilevel optimizer (OBBO) that\nutilizes adaptive Bregman divergences. We demonstrate that OBBO enhances the\nknown sublinear rates for bilevel local regret through a novel hypergradient\nerror decomposition that adapts to the underlying geometry of the problem. In\nstochastic contexts, we introduce the first stochastic online bilevel optimizer\n(SOBBO), which employs a window averaging method for updating outer-level\nvariables using a weighted average of recent stochastic approximations of\nhypergradients. This approach not only achieves sublinear rates of bilevel\nlocal regret but also serves as an effective variance reduction strategy,\nobviating the need for additional stochastic gradient samples at each timestep.\nExperiments on online hyperparameter optimization and online meta-learning\nhighlight the superior performance, efficiency, and adaptability of our\nBregman-based algorithms compared to established online and offline bilevel\nbenchmarks.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":"201 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bilevel optimization methods are increasingly relevant within machine learning, especially for tasks such as hyperparameter optimization and meta-learning. Compared to the offline setting, online bilevel optimization (OBO) offers a more dynamic framework by accommodating time-varying functions and sequentially arriving data. This study addresses the online nonconvex-strongly convex bilevel optimization problem. In deterministic settings, we introduce a novel online Bregman bilevel optimizer (OBBO) that utilizes adaptive Bregman divergences. We demonstrate that OBBO enhances the known sublinear rates for bilevel local regret through a novel hypergradient error decomposition that adapts to the underlying geometry of the problem. In stochastic contexts, we introduce the first stochastic online bilevel optimizer (SOBBO), which employs a window averaging method for updating outer-level variables using a weighted average of recent stochastic approximations of hypergradients. This approach not only achieves sublinear rates of bilevel local regret but also serves as an effective variance reduction strategy, obviating the need for additional stochastic gradient samples at each timestep. Experiments on online hyperparameter optimization and online meta-learning highlight the superior performance, efficiency, and adaptability of our Bregman-based algorithms compared to established online and offline bilevel benchmarks.
利用布雷格曼发散进行在线非凸双曲优化
双层优化方法在机器学习中的作用越来越大,尤其是在超参数优化和元学习等任务中。与离线设置相比,在线双峰优化(OBO)提供了一个更加动态的框架,可以适应时变函数和连续到达的数据。本研究探讨了在线非凸-强凸双层优化问题。在确定性设置中,我们引入了一种利用自适应布雷格曼发散的新型在线布雷格曼双级优化器(OBBO)。我们证明,OBBO 通过一种新颖的、适应问题底层几何形状的超梯度恐怖分解,提高了已知的双梯度局部遗憾的亚线性率。在随机上下文中,我们引入了首个随机在线双级优化器(SOBBO),它采用窗口平均法,使用最近随机近似超梯度的加权平均值更新外层变量。在线超参数优化和在线元学习实验表明,与已有的在线和离线双向优化基准相比,我们基于布雷格曼(Bregman)的算法具有卓越的性能、效率和适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信