Dynamic Range Reduction via Branch-and-Bound

Thore Gerlach, Nico Piatkowski
{"title":"Dynamic Range Reduction via Branch-and-Bound","authors":"Thore Gerlach, Nico Piatkowski","doi":"arxiv-2409.10863","DOIUrl":null,"url":null,"abstract":"The demand for high-performance computing in machine learning and artificial\nintelligence has led to the development of specialized hardware accelerators\nlike Tensor Processing Units (TPUs), Graphics Processing Units (GPUs), and\nField-Programmable Gate Arrays (FPGAs). A key strategy to enhance these\naccelerators is the reduction of precision in arithmetic operations, which\nincreases processing speed and lowers latency - crucial for real-time AI\napplications. Precision reduction minimizes memory bandwidth requirements and\nenergy consumption, essential for large-scale and mobile deployments, and\nincreases throughput by enabling more parallel operations per cycle, maximizing\nhardware resource utilization. This strategy is equally vital for solving\nNP-hard quadratic unconstrained binary optimization (QUBO) problems common in\nmachine learning, which often require high precision for accurate\nrepresentation. Special hardware solvers, such as quantum annealers, benefit\nsignificantly from precision reduction. This paper introduces a fully\nprincipled Branch-and-Bound algorithm for reducing precision needs in QUBO\nproblems by utilizing dynamic range as a measure of complexity. Experiments\nvalidate our algorithm's effectiveness on an actual quantum annealer.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The demand for high-performance computing in machine learning and artificial intelligence has led to the development of specialized hardware accelerators like Tensor Processing Units (TPUs), Graphics Processing Units (GPUs), and Field-Programmable Gate Arrays (FPGAs). A key strategy to enhance these accelerators is the reduction of precision in arithmetic operations, which increases processing speed and lowers latency - crucial for real-time AI applications. Precision reduction minimizes memory bandwidth requirements and energy consumption, essential for large-scale and mobile deployments, and increases throughput by enabling more parallel operations per cycle, maximizing hardware resource utilization. This strategy is equally vital for solving NP-hard quadratic unconstrained binary optimization (QUBO) problems common in machine learning, which often require high precision for accurate representation. Special hardware solvers, such as quantum annealers, benefit significantly from precision reduction. This paper introduces a fully principled Branch-and-Bound algorithm for reducing precision needs in QUBO problems by utilizing dynamic range as a measure of complexity. Experiments validate our algorithm's effectiveness on an actual quantum annealer.
通过分支和边界缩小动态范围
机器学习和人工智能领域对高性能计算的需求推动了张量处理单元(TPU)、图形处理器(GPU)和现场可编程门阵列(FPGA)等专用硬件加速器的发展。增强这些加速器的一个关键策略是降低算术运算的精度,从而提高处理速度并降低延迟--这对实时人工智能应用至关重要。降低精度可最大限度地减少内存带宽需求和能耗,这对大规模和移动部署至关重要;同时,通过在每个周期内进行更多并行运算来提高吞吐量,从而最大限度地提高硬件资源利用率。这一策略对于解决机器学习中常见的NP-hard二次无约束二元优化(QUBO)问题同样重要,因为这些问题通常需要高精度的精确表示。特殊的硬件求解器,如量子退火器,可从精度降低中显著受益。本文通过利用动态范围作为复杂度的衡量标准,介绍了一种全原理的分支与边界算法,用于降低 QUBO 问题的精度需求。实验验证了我们的算法在实际量子退火器上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信