Optimization of Advance Drainage Borehole Layout Based on Visual Modflow

IF 3 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Water Pub Date : 2024-09-14 DOI:10.3390/w16182613
Yue Li, Yunpeng Zhang, Yajie Ma, Fangang Meng
{"title":"Optimization of Advance Drainage Borehole Layout Based on Visual Modflow","authors":"Yue Li, Yunpeng Zhang, Yajie Ma, Fangang Meng","doi":"10.3390/w16182613","DOIUrl":null,"url":null,"abstract":"It is an effective measure to prevent water damage in coal mines in order to construct drainage boreholes in water-filled aquifers of a working face roof. The hydrogeological parameters of the roof water-filled aquifer and the parameters of the drainage borehole are closely related to the underground drainage effect. Taking the 3085 working face of the Donghuantuo Mine in Kailuan as an example, the influence degree of hydrogeological parameters and hydrophobic borehole parameters on the amount of drainage water was analyzed using the generalized gray correlation degree. Based on Visual Modflow, the 3D groundwater visualization model was established and the dredging borehole was generalized into the pumping borehole. By changing the main influencing factors, the design optimization of the advanced hydrophobic borehole was discussed. The results showed that the aquifer thickness had a great influence on the amount of water discharged, and the influence degree of the sharp angle between the formation and the direction of drilling, the depth of the final hole, the azimuth angle of drilling, the dip angle of drilling, the elevation of the final hole and the elevation of the borehole on the amount of water discharged decreased successively. Based on the simulation calculation, it could be observed that the hydrophobic borehole should be placed in a position with a larger accumulated thickness of the aquifer to have a better effect of hydrophobic depressurization.","PeriodicalId":23788,"journal":{"name":"Water","volume":"101 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/w16182613","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

It is an effective measure to prevent water damage in coal mines in order to construct drainage boreholes in water-filled aquifers of a working face roof. The hydrogeological parameters of the roof water-filled aquifer and the parameters of the drainage borehole are closely related to the underground drainage effect. Taking the 3085 working face of the Donghuantuo Mine in Kailuan as an example, the influence degree of hydrogeological parameters and hydrophobic borehole parameters on the amount of drainage water was analyzed using the generalized gray correlation degree. Based on Visual Modflow, the 3D groundwater visualization model was established and the dredging borehole was generalized into the pumping borehole. By changing the main influencing factors, the design optimization of the advanced hydrophobic borehole was discussed. The results showed that the aquifer thickness had a great influence on the amount of water discharged, and the influence degree of the sharp angle between the formation and the direction of drilling, the depth of the final hole, the azimuth angle of drilling, the dip angle of drilling, the elevation of the final hole and the elevation of the borehole on the amount of water discharged decreased successively. Based on the simulation calculation, it could be observed that the hydrophobic borehole should be placed in a position with a larger accumulated thickness of the aquifer to have a better effect of hydrophobic depressurization.
基于可视化模型流程的超前排水钻孔布局优化
在工作面顶板充水含水层中打排水钻孔,是防止煤矿水害的有效措施。顶板充水含水层的水文地质参数和排水钻孔的参数与井下排水效果密切相关。以开滦东黄土矿3085工作面为例,利用广义灰色关联度分析了水文地质参数和疏水钻孔参数对排水量的影响程度。基于 Visual Modflow,建立了三维地下水可视化模型,并将掘进钻孔概化为抽水钻孔。通过改变主要影响因素,讨论了先进疏水钻孔的优化设计。结果表明,含水层厚度对出水量影响较大,地层与钻孔方向的锐角、终孔深度、钻孔方位角、钻孔倾角、终孔高程和钻孔高程对出水量的影响程度依次减小。根据模拟计算可知,疏水钻孔应布置在含水层累积厚度较大的位置,以获得更好的疏水降压效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Water
Water WATER RESOURCES-
CiteScore
5.80
自引率
14.70%
发文量
3491
审稿时长
19.85 days
期刊介绍: Water (ISSN 2073-4441) is an international and cross-disciplinary scholarly journal covering all aspects of water including water science and technology, and the hydrology, ecology and management of water resources. It publishes regular research papers, critical reviews and short communications, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信