Enhanced load frequency control using predictive reduced order generalized active disturbance rejection control under communication delay and cyber-attack

IF 1.6 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Priya Kumari, Somnath Pan
{"title":"Enhanced load frequency control using predictive reduced order generalized active disturbance rejection control under communication delay and cyber-attack","authors":"Priya Kumari, Somnath Pan","doi":"10.1007/s00202-024-02713-0","DOIUrl":null,"url":null,"abstract":"<p>Load frequency control (LFC) is necessary to maintain the power system frequency and tie line power to its nominal value. In modern power system, importance of LFC is increased due to inevitable use of communication channel, intermittent nature of renewable sources, computer-based control strategies, model uncertainties and cyber-attack. An effective LFC is required to mitigate various uncertainties and disturbances including the delay for which active disturbance rejection control (ADRC) control schemes have been explored in this work. An ADRC consists of an extended state observer and a state feedback controller. In the present work, predictive structure like Smith predictor has been proposed for different variants of ADRCs. Additionally, a new variant of ADRC, namely, reduced order generalized active disturbance rejection control (RGADRC) has been proposed along with the predictive structure. These controllers are designed considering system uncertainties and with or without non-minimum phase. To show the efficacy of the proposed schemes examples of single-area non-reheat, reheat, and two-area thermal and photovoltaic-wind micro-grid system are demonstrated. The robustness of the proposed approach is examined while taking system parameter variation, random fluctuation of solar power (0–0.001 p.u.), wind power (0–0.0012 p.u.), and load disturbance (0–0.01 p.u.), and cyber-attack (2 p.u.). The predictive RGADRC shows superior performances compared with other predictive ADRCs as well as some methods prevalent in the literature for LFC systems with nonlinearities like generation rate constraint of 0.1 p.u./min, governor dead band of 0.05%, and communication delay of 2.28 s. The predictive RGADRC maintains stability of the LFC system with satisfactory transient for + 50% change in gain and time constant of the generator and load, along with random fluctuations as mentioned above.</p>","PeriodicalId":50546,"journal":{"name":"Electrical Engineering","volume":"17 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00202-024-02713-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Load frequency control (LFC) is necessary to maintain the power system frequency and tie line power to its nominal value. In modern power system, importance of LFC is increased due to inevitable use of communication channel, intermittent nature of renewable sources, computer-based control strategies, model uncertainties and cyber-attack. An effective LFC is required to mitigate various uncertainties and disturbances including the delay for which active disturbance rejection control (ADRC) control schemes have been explored in this work. An ADRC consists of an extended state observer and a state feedback controller. In the present work, predictive structure like Smith predictor has been proposed for different variants of ADRCs. Additionally, a new variant of ADRC, namely, reduced order generalized active disturbance rejection control (RGADRC) has been proposed along with the predictive structure. These controllers are designed considering system uncertainties and with or without non-minimum phase. To show the efficacy of the proposed schemes examples of single-area non-reheat, reheat, and two-area thermal and photovoltaic-wind micro-grid system are demonstrated. The robustness of the proposed approach is examined while taking system parameter variation, random fluctuation of solar power (0–0.001 p.u.), wind power (0–0.0012 p.u.), and load disturbance (0–0.01 p.u.), and cyber-attack (2 p.u.). The predictive RGADRC shows superior performances compared with other predictive ADRCs as well as some methods prevalent in the literature for LFC systems with nonlinearities like generation rate constraint of 0.1 p.u./min, governor dead band of 0.05%, and communication delay of 2.28 s. The predictive RGADRC maintains stability of the LFC system with satisfactory transient for + 50% change in gain and time constant of the generator and load, along with random fluctuations as mentioned above.

Abstract Image

利用通信延迟和网络攻击下的预测性降阶广义主动干扰抑制控制增强负载频率控制
负载频率控制(LFC)是保持电力系统频率和连接线功率额定值的必要手段。在现代电力系统中,由于不可避免地使用通信信道、可再生能源的间歇性、基于计算机的控制策略、模型的不确定性和网络攻击,负载频率控制的重要性日益增加。需要一种有效的 LFC 来缓解包括延迟在内的各种不确定性和干扰,为此,本研究探索了主动干扰抑制控制(ADRC)控制方案。ADRC 由一个扩展状态观测器和一个状态反馈控制器组成。在本研究中,针对不同变体的 ADRC 提出了类似 Smith 预测器的预测结构。此外,在提出预测结构的同时,还提出了一种新的 ADRC 变体,即减阶广义主动干扰抑制控制(RGADRC)。这些控制器的设计考虑了系统的不确定性,以及是否存在非最小相位。为了展示所提方案的功效,演示了单区域非再热系统、再热系统、双区域热系统和光伏-风力微电网系统的实例。在系统参数变化、太阳能功率随机波动(0-0.001 p.u.)、风力功率随机波动(0-0.0012 p.u.)、负载干扰(0-0.01 p.u.)和网络攻击(2 p.u.)的情况下,对所提方法的鲁棒性进行了检验。预测性 RGADRC 与其他预测性 ADRC 以及文献中的一些方法相比,在具有发电率约束 0.1 p.u./min、调速器死区 0.05% 和通信延迟 2.28 s 等非线性因素的 LFC 系统中表现出更优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electrical Engineering
Electrical Engineering 工程技术-工程:电子与电气
CiteScore
3.60
自引率
16.70%
发文量
0
审稿时长
>12 weeks
期刊介绍: The journal “Electrical Engineering” following the long tradition of Archiv für Elektrotechnik publishes original papers of archival value in electrical engineering with a strong focus on electric power systems, smart grid approaches to power transmission and distribution, power system planning, operation and control, electricity markets, renewable power generation, microgrids, power electronics, electrical machines and drives, electric vehicles, railway electrification systems and electric transportation infrastructures, energy storage in electric power systems and vehicles, high voltage engineering, electromagnetic transients in power networks, lightning protection, electrical safety, electrical insulation systems, apparatus, devices, and components. Manuscripts describing theoretical, computer application and experimental research results are welcomed. Electrical Engineering - Archiv für Elektrotechnik is published in agreement with Verband der Elektrotechnik Elektronik Informationstechnik eV (VDE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信