{"title":"Identification of Flow Pressure-Driven Leakage Zones Using Improved EDNN-PP-LCNetV2 with Deep Learning Framework in Water Distribution System","authors":"Bo Dong, Shihu Shu, Dengxin Li","doi":"10.3390/pr12091992","DOIUrl":null,"url":null,"abstract":"This study introduces a novel deep learning framework for detecting leakage in water distribution systems (WDSs). The key innovation lies in a two-step process: First, the WDS is partitioned using a K-means clustering algorithm based on pressure sensitivity analysis. Then, an encoder–decoder neural network (EDNN) model is employed to extract and process the pressure and flow sensitivities. The core of the framework is the PP-LCNetV2 architecture that ensures the model’s lightweight, which is optimized for CPU devices. This combination ensures rapid, accurate leakage detection. Three cases are employed to evaluate the method. By applying data augmentation techniques, including the demand and measurement noises, the framework demonstrates robustness across different noise levels. Compared with other methods, the results show this method can efficiently detect over 90% of leakage across different operating conditions while maintaining a higher recognition of the magnitude of leakages. This research offers a significant improvement in computational efficiency and detection accuracy over existing approaches.","PeriodicalId":20597,"journal":{"name":"Processes","volume":"15 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Processes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/pr12091992","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces a novel deep learning framework for detecting leakage in water distribution systems (WDSs). The key innovation lies in a two-step process: First, the WDS is partitioned using a K-means clustering algorithm based on pressure sensitivity analysis. Then, an encoder–decoder neural network (EDNN) model is employed to extract and process the pressure and flow sensitivities. The core of the framework is the PP-LCNetV2 architecture that ensures the model’s lightweight, which is optimized for CPU devices. This combination ensures rapid, accurate leakage detection. Three cases are employed to evaluate the method. By applying data augmentation techniques, including the demand and measurement noises, the framework demonstrates robustness across different noise levels. Compared with other methods, the results show this method can efficiently detect over 90% of leakage across different operating conditions while maintaining a higher recognition of the magnitude of leakages. This research offers a significant improvement in computational efficiency and detection accuracy over existing approaches.
期刊介绍:
Processes (ISSN 2227-9717) provides an advanced forum for process related research in chemistry, biology and allied engineering fields. The journal publishes regular research papers, communications, letters, short notes and reviews. Our aim is to encourage researchers to publish their experimental, theoretical and computational results in as much detail as necessary. There is no restriction on paper length or number of figures and tables.