Vista3D: Unravel the 3D Darkside of a Single Image

Qiuhong Shen, Xingyi Yang, Michael Bi Mi, Xinchao Wang
{"title":"Vista3D: Unravel the 3D Darkside of a Single Image","authors":"Qiuhong Shen, Xingyi Yang, Michael Bi Mi, Xinchao Wang","doi":"arxiv-2409.12193","DOIUrl":null,"url":null,"abstract":"We embark on the age-old quest: unveiling the hidden dimensions of objects\nfrom mere glimpses of their visible parts. To address this, we present Vista3D,\na framework that realizes swift and consistent 3D generation within a mere 5\nminutes. At the heart of Vista3D lies a two-phase approach: the coarse phase\nand the fine phase. In the coarse phase, we rapidly generate initial geometry\nwith Gaussian Splatting from a single image. In the fine phase, we extract a\nSigned Distance Function (SDF) directly from learned Gaussian Splatting,\noptimizing it with a differentiable isosurface representation. Furthermore, it\nelevates the quality of generation by using a disentangled representation with\ntwo independent implicit functions to capture both visible and obscured aspects\nof objects. Additionally, it harmonizes gradients from 2D diffusion prior with\n3D-aware diffusion priors by angular diffusion prior composition. Through\nextensive evaluation, we demonstrate that Vista3D effectively sustains a\nbalance between the consistency and diversity of the generated 3D objects.\nDemos and code will be available at https://github.com/florinshen/Vista3D.","PeriodicalId":501480,"journal":{"name":"arXiv - CS - Multimedia","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We embark on the age-old quest: unveiling the hidden dimensions of objects from mere glimpses of their visible parts. To address this, we present Vista3D, a framework that realizes swift and consistent 3D generation within a mere 5 minutes. At the heart of Vista3D lies a two-phase approach: the coarse phase and the fine phase. In the coarse phase, we rapidly generate initial geometry with Gaussian Splatting from a single image. In the fine phase, we extract a Signed Distance Function (SDF) directly from learned Gaussian Splatting, optimizing it with a differentiable isosurface representation. Furthermore, it elevates the quality of generation by using a disentangled representation with two independent implicit functions to capture both visible and obscured aspects of objects. Additionally, it harmonizes gradients from 2D diffusion prior with 3D-aware diffusion priors by angular diffusion prior composition. Through extensive evaluation, we demonstrate that Vista3D effectively sustains a balance between the consistency and diversity of the generated 3D objects. Demos and code will be available at https://github.com/florinshen/Vista3D.
Vista3D:揭开单张图像的 3D 黑幕
我们开始了一项古老的探索:从物体可见部分的一瞥中揭示其隐藏的维度。为此,我们推出了 Vista3D,这是一个能在短短 5 分钟内实现快速、一致的三维生成的框架。Vista3D 的核心是一种两阶段方法:粗略阶段和精细阶段。在粗略阶段,我们利用高斯拼接技术从单张图像中快速生成初始几何图形。在精细阶段,我们直接从学习的高斯拼接法中提取有符号距离函数(SDF),并用可变等值面表示法对其进行优化。此外,它还通过使用两个独立隐含函数的分离表示来捕捉物体的可见和不可见部分,从而提高了生成质量。此外,它还通过角度扩散先验组合协调了来自二维扩散先验和三维感知扩散先验的梯度。通过广泛的评估,我们证明了 Vista3D 能够有效地维持生成的三维物体的一致性和多样性之间的平衡。演示和代码将发布在 https://github.com/florinshen/Vista3D 网站上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信