Assessment of Blast Furnace Slags as a Potential Catalyst in Ozonation to Degrade Bezafibrate: Degradation Study and Kinetic Study via Non-Parametric Modeling

IF 2.8 4区 工程技术 Q2 ENGINEERING, CHEMICAL
Processes Pub Date : 2024-09-17 DOI:10.3390/pr12091998
Alexandra Galina-Licea, Mariel Alfaro-Ponce, Isaac Chairez, Elizabeth Reyes, Arizbeth Perez-Martínez
{"title":"Assessment of Blast Furnace Slags as a Potential Catalyst in Ozonation to Degrade Bezafibrate: Degradation Study and Kinetic Study via Non-Parametric Modeling","authors":"Alexandra Galina-Licea, Mariel Alfaro-Ponce, Isaac Chairez, Elizabeth Reyes, Arizbeth Perez-Martínez","doi":"10.3390/pr12091998","DOIUrl":null,"url":null,"abstract":"This study investigates the effectiveness of blast furnace slags (BFSs) as catalysts in the ozonation process to degrade complex contaminants such as bezafibrate (BFZ) at different pH levels. The findings reveal that the presence of BFS enhances degradation efficiency, achieving a 10% improvement at pH 10 and a 30% improvement at pH 5.5 compared to simple ozonation. The highest degradation efficiency was observed in the Ozonation–BFS system at pH 10, with 90% decomposition of BFZ. These results were corroborated through ozone consumption analysis, BOD5 measurements, and the identification of oxalic acid as the final decomposition product. Due to the complexity of the reaction system, kinetic characterization was performed using non-parametric modeling based on differential neural networks. The model indicated that the observed reaction rate for BFZ degradation in the presence of ozone and BFS was 4.12 times higher at pH 5.0 and 1.08 times higher at pH 10.0 compared to simple ozonation. These results underscore the potential of using BFS in catalytic ozonation processes for the effective treatment of recalcitrant contaminants in wastewater.","PeriodicalId":20597,"journal":{"name":"Processes","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Processes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/pr12091998","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the effectiveness of blast furnace slags (BFSs) as catalysts in the ozonation process to degrade complex contaminants such as bezafibrate (BFZ) at different pH levels. The findings reveal that the presence of BFS enhances degradation efficiency, achieving a 10% improvement at pH 10 and a 30% improvement at pH 5.5 compared to simple ozonation. The highest degradation efficiency was observed in the Ozonation–BFS system at pH 10, with 90% decomposition of BFZ. These results were corroborated through ozone consumption analysis, BOD5 measurements, and the identification of oxalic acid as the final decomposition product. Due to the complexity of the reaction system, kinetic characterization was performed using non-parametric modeling based on differential neural networks. The model indicated that the observed reaction rate for BFZ degradation in the presence of ozone and BFS was 4.12 times higher at pH 5.0 and 1.08 times higher at pH 10.0 compared to simple ozonation. These results underscore the potential of using BFS in catalytic ozonation processes for the effective treatment of recalcitrant contaminants in wastewater.
评估高炉渣作为臭氧降解贝扎贝特的潜在催化剂:通过非参数模型进行降解研究和动力学研究
本研究调查了高炉矿渣(BFSs)作为臭氧处理过程中的催化剂,在不同 pH 值下降解复杂污染物(如棉子纤酸(BFZ))的效果。研究结果表明,BFS 的存在提高了降解效率,与简单的臭氧处理相比,在 pH 值为 10 时,降解效率提高了 10%,在 pH 值为 5.5 时,降解效率提高了 30%。臭氧-BFS 系统在 pH 值为 10 时的降解效率最高,BFZ 的分解率达到 90%。臭氧消耗分析、BOD5 测量以及草酸作为最终分解产物的鉴定结果都证实了这些结果。由于反应系统的复杂性,使用基于微分神经网络的非参数模型对其进行了动力学表征。该模型表明,与简单的臭氧处理相比,在有臭氧和 BFS 存在的情况下,观察到的 BFZ 降解反应速率在 pH 值为 5.0 时要高出 4.12 倍,在 pH 值为 10.0 时要高出 1.08 倍。这些结果凸显了在催化臭氧过程中使用 BFS 有效处理废水中难降解污染物的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Processes
Processes Chemical Engineering-Bioengineering
CiteScore
5.10
自引率
11.40%
发文量
2239
审稿时长
14.11 days
期刊介绍: Processes (ISSN 2227-9717) provides an advanced forum for process related research in chemistry, biology and allied engineering fields. The journal publishes regular research papers, communications, letters, short notes and reviews. Our aim is to encourage researchers to publish their experimental, theoretical and computational results in as much detail as necessary. There is no restriction on paper length or number of figures and tables.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信