{"title":"Abundance and SYZ conjecture in families of hyperkahler manifolds","authors":"Andrey Soldatenkov, Misha Verbitsky","doi":"arxiv-2409.09142","DOIUrl":null,"url":null,"abstract":"Let $L$ be a holomorphic line bundle on a hyperkahler manifold $M$, with\n$c_1(L)$ nef and not big. SYZ conjecture predicts that $L$ is semiample. We\nprove that this is true, assuming that $(M,L)$ has a deformation $(M',L')$ with\n$L'$ semiample. We introduce a version of the Teichmuller space that\nparametrizes pairs $(M,L)$ up to isotopy. We prove a version of the global\nTorelli theorem for such Teichmuller spaces and use it to deduce the\ndeformation invariance of semiampleness.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"101 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let $L$ be a holomorphic line bundle on a hyperkahler manifold $M$, with
$c_1(L)$ nef and not big. SYZ conjecture predicts that $L$ is semiample. We
prove that this is true, assuming that $(M,L)$ has a deformation $(M',L')$ with
$L'$ semiample. We introduce a version of the Teichmuller space that
parametrizes pairs $(M,L)$ up to isotopy. We prove a version of the global
Torelli theorem for such Teichmuller spaces and use it to deduce the
deformation invariance of semiampleness.