Killing (super)algebras associated to connections on spinors

Andrew D. K. Beckett
{"title":"Killing (super)algebras associated to connections on spinors","authors":"Andrew D. K. Beckett","doi":"arxiv-2409.11306","DOIUrl":null,"url":null,"abstract":"We generalise the notion of a Killing superalgebra which arises in the\nphysics literature on supergravity to general dimension, signature and choice\nof spinor module and squaring map, and also allowing for Lie algebras as well\nas superalgebras, capturing a set of examples of such algebras on\nhigher-dimensional spheres. We demonstrate that the definition requires a\nconnection on a spinor bundle -- provided by supersymmetry transformations in\nthe supergravity examples and by the Killing spinor equation on the spheres --\nand obtain a set of sufficient conditions on such a connection for the Killing\n(super)algebra to exist. We show that these (super)algebras are filtered\ndeformations of graded subalgebras of (a generalisation of) the Poincar\\'e\nsuperalgebra and then study such deformations abstractly using Spencer\ncohomology. In the highly supersymmetric Lorentzian case, we describe the\nfiltered subdeformations which are of the appropriate form to arise as Killing\nsuperalgebras, lay out a classification scheme for their odd-generated\nsubalgebras and prove that, under certain technical conditions, there exist\nhomogeneous Lorentzian spin manifolds on which these deformations are realised\nas Killing superalgebras. Our results generalise previous work in the\n11-dimensional supergravity literature.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We generalise the notion of a Killing superalgebra which arises in the physics literature on supergravity to general dimension, signature and choice of spinor module and squaring map, and also allowing for Lie algebras as well as superalgebras, capturing a set of examples of such algebras on higher-dimensional spheres. We demonstrate that the definition requires a connection on a spinor bundle -- provided by supersymmetry transformations in the supergravity examples and by the Killing spinor equation on the spheres -- and obtain a set of sufficient conditions on such a connection for the Killing (super)algebra to exist. We show that these (super)algebras are filtered deformations of graded subalgebras of (a generalisation of) the Poincar\'e superalgebra and then study such deformations abstractly using Spencer cohomology. In the highly supersymmetric Lorentzian case, we describe the filtered subdeformations which are of the appropriate form to arise as Killing superalgebras, lay out a classification scheme for their odd-generated subalgebras and prove that, under certain technical conditions, there exist homogeneous Lorentzian spin manifolds on which these deformations are realised as Killing superalgebras. Our results generalise previous work in the 11-dimensional supergravity literature.
与旋量上的连接相关的基林(超)代数
我们将物理学文献中出现的超引力基林超代数的概念推广到一般维度、签名以及旋子模块和平方映射的选择上,同时也允许列代数和超代数,并捕捉了一组高维度球面上的此类代数的例子。我们证明了这个定义需要旋量束上的连接--由超引力例子中的超对称变换和球面上的基林旋量方程提供--并得到了基林(超)代数存在这种连接的一系列充分条件。我们证明了这些(超)代数是Poincar\'esuperalgebra的(广义)分级子代数的滤波变形,然后利用斯宾塞同调抽象地研究了这种变形。在高度超对称洛伦兹情况下,我们描述了滤波子变形,这些变形具有作为基林超代数出现的适当形式,为它们的奇数生成子代数列出了一个分类方案,并证明了在某些技术条件下,存在着同质洛伦兹自旋流形,在这些流形上,这些变形被实现为基林超代数。我们的结果概括了以前在 11 维超引力文献中的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信