Meal Delivery Routing Problem with Stochastic Meal Preparation Times and Customer Locations

Surendra Reddy Kancharla, Tom Van Woensel, S. Travis Waller, Satish V. Ukkusuri
{"title":"Meal Delivery Routing Problem with Stochastic Meal Preparation Times and Customer Locations","authors":"Surendra Reddy Kancharla, Tom Van Woensel, S. Travis Waller, Satish V. Ukkusuri","doi":"10.1007/s11067-024-09643-1","DOIUrl":null,"url":null,"abstract":"<p>We investigate the Meal Delivery Routing Problem (MDRP), managing courier assignments between restaurants and customers. Our proposed variant considers uncertainties in meal preparation times and future order numbers with their locations, mirroring real challenges meal delivery providers face. Employing a rolling-horizon framework integrating Sample Average Approximation (SAA) and the Adaptive Large Neighborhood Search (ALNS) algorithm, we analyze modified Grubhub MDRP instances. Considering route planning uncertainties, our approach identifies routes at least 25% more profitable than deterministic methods reliant on expected values. Our study underscores the pivotal role of efficient meal preparation time management, impacting order rejections, customer satisfaction, and operational efficiency.</p>","PeriodicalId":501141,"journal":{"name":"Networks and Spatial Economics","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Networks and Spatial Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11067-024-09643-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the Meal Delivery Routing Problem (MDRP), managing courier assignments between restaurants and customers. Our proposed variant considers uncertainties in meal preparation times and future order numbers with their locations, mirroring real challenges meal delivery providers face. Employing a rolling-horizon framework integrating Sample Average Approximation (SAA) and the Adaptive Large Neighborhood Search (ALNS) algorithm, we analyze modified Grubhub MDRP instances. Considering route planning uncertainties, our approach identifies routes at least 25% more profitable than deterministic methods reliant on expected values. Our study underscores the pivotal role of efficient meal preparation time management, impacting order rejections, customer satisfaction, and operational efficiency.

Abstract Image

具有随机备餐时间和客户位置的送餐路由问题
我们对送餐路由问题(MDRP)进行了研究,该问题涉及餐厅与客户之间的快递分配管理。我们提出的变体考虑了备餐时间和未来订单数量及其位置的不确定性,反映了送餐服务提供商面临的实际挑战。我们采用整合了样本平均逼近(SAA)和自适应大邻域搜索(ALNS)算法的滚动视距框架,对修改后的 Grubhub MDRP 实例进行了分析。考虑到路线规划的不确定性,我们的方法比依赖预期值的确定性方法多识别出至少 25% 的盈利路线。我们的研究强调了高效备餐时间管理的关键作用,它影响着订单拒绝率、客户满意度和运营效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信