Soft modes in vector spin glass models on sparse random graphs

Silvio Franz, Cosimo Lupo, Flavio Nicoletti, Giorgio Parisi, Federico Ricci-Tersenghi
{"title":"Soft modes in vector spin glass models on sparse random graphs","authors":"Silvio Franz, Cosimo Lupo, Flavio Nicoletti, Giorgio Parisi, Federico Ricci-Tersenghi","doi":"arxiv-2409.10312","DOIUrl":null,"url":null,"abstract":"We study numerically the Hessian of low-lying minima of vector spin glass\nmodels defined on random regular graphs. We consider the two-component (XY) and\nthree-component (Heisenberg) spin glasses at zero temperature, subjected to the\naction of a randomly oriented external field. Varying the intensity of the\nexternal field, these models undergo a zero temperature phase transition from a\nparamagnet at high field to a spin glass at low field. We study how the\nspectral properties of the Hessian depend on the magnetic field. In particular,\nwe study the shape of the spectrum at low frequency and the localization\nproperties of low energy eigenvectors across the transition. We find that in\nboth phases the edge of the spectral density behaves as $\\lambda^{3/2}$: such a\nbehavior rules out the presence of a diverging spin-glass susceptibility\n$\\chi_{SG}=\\langle 1/\\lambda^2 \\rangle$. As to low energy eigenvectors, we find\nthat the softest eigenmodes are always localized in both phases of the two\nmodels. However, by studying in detail the geometry of low energy eigenmodes\nacross different energy scales close to the lower edge of the spectrum, we find\na different behavior for the two models at the transition: in the XY case, low\nenergy modes are typically localized; at variance, in the Heisenberg case\nlow-energy eigenmodes with a multi-modal structure (sort of ``delocalization'')\nappear at an energy scale that vanishes in the infinite size limit. These\ngeometrically non-trivial excitations, which we call Concentrated and\nDelocalised Low Energy Modes (CDLEM), coexist with trivially localised\nexcitations: we interpret their existence as a sign of critical behavior\nrelated to the onset of the spin glass phase.","PeriodicalId":501066,"journal":{"name":"arXiv - PHYS - Disordered Systems and Neural Networks","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study numerically the Hessian of low-lying minima of vector spin glass models defined on random regular graphs. We consider the two-component (XY) and three-component (Heisenberg) spin glasses at zero temperature, subjected to the action of a randomly oriented external field. Varying the intensity of the external field, these models undergo a zero temperature phase transition from a paramagnet at high field to a spin glass at low field. We study how the spectral properties of the Hessian depend on the magnetic field. In particular, we study the shape of the spectrum at low frequency and the localization properties of low energy eigenvectors across the transition. We find that in both phases the edge of the spectral density behaves as $\lambda^{3/2}$: such a behavior rules out the presence of a diverging spin-glass susceptibility $\chi_{SG}=\langle 1/\lambda^2 \rangle$. As to low energy eigenvectors, we find that the softest eigenmodes are always localized in both phases of the two models. However, by studying in detail the geometry of low energy eigenmodes across different energy scales close to the lower edge of the spectrum, we find a different behavior for the two models at the transition: in the XY case, low energy modes are typically localized; at variance, in the Heisenberg case low-energy eigenmodes with a multi-modal structure (sort of ``delocalization'') appear at an energy scale that vanishes in the infinite size limit. These geometrically non-trivial excitations, which we call Concentrated and Delocalised Low Energy Modes (CDLEM), coexist with trivially localised excitations: we interpret their existence as a sign of critical behavior related to the onset of the spin glass phase.
稀疏随机图上矢量自旋玻璃模型中的软模式
我们用数值方法研究了定义在随机规则图形上的矢量自旋玻璃模型的低洼极小值的Hessian。我们考虑了零温下的双分量(XY)和三分量(海森堡)自旋玻璃,它们受到随机方向的外场作用。随着外场强度的变化,这些模型会发生零温相变,从高场时的磁体变为低场时的自旋玻璃。我们研究了赫塞斯的光谱特性如何依赖于磁场。特别是,我们研究了低频频谱的形状和整个转变过程中低能量特征向量的定位特性。我们发现,在这两个阶段中,频谱密度的边缘都表现为 $\lambda^{3/2}$ :这样的表现排除了发散自旋玻璃感性$\chi_{SG}=\langle 1/\lambda^2 \rangle$的存在。至于低能特征向量,我们发现最软的特征模式总是定位在双模型的两个相中。然而,通过详细研究靠近谱下边缘的不同能量尺度上的低能特征向量的几何形状,我们发现两种模型在过渡阶段有不同的行为:在XY情况下,低能模式通常是局域化的;与此不同,在海森堡情况下,具有多模式结构(某种 "去局域化")的低能特征向量出现在一个能量尺度上,而这个能量尺度在无限大极限中消失了。这些几何上的非三维激发,我们称之为集中和非局域化低能模(CDLEM),与三维局域化激发共存:我们将它们的存在解释为与自旋玻璃阶段开始有关的临界行为的标志。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信