Linearity, crystallographic quotients, and automorphisms of virtual Artin groups

Neeraj Kumar Dhanwani, Pravin Kumar, Tushar Kanta Naik, Mahender Singh
{"title":"Linearity, crystallographic quotients, and automorphisms of virtual Artin groups","authors":"Neeraj Kumar Dhanwani, Pravin Kumar, Tushar Kanta Naik, Mahender Singh","doi":"arxiv-2409.10270","DOIUrl":null,"url":null,"abstract":"Virtual Artin groups were recently introduced by Bellingeri, Paris, and Thiel\nas broad generalizations of the well-known virtual braid groups. For each\nCoxeter graph $\\Gamma$, they defined the virtual Artin group $VA[\\Gamma]$,\nwhich is generated by the corresponding Artin group $A[\\Gamma]$ and the Coxeter\ngroup $W[\\Gamma]$, subject to certain mixed relations inspired by the action of\n$W[\\Gamma]$ on its root system $\\Phi[\\Gamma]$. There is a natural surjection $\n\\mathrm{VA}[\\Gamma] \\rightarrow W[\\Gamma]$, with the kernel $PVA[\\Gamma]$\nrepresenting the pure virtual Artin group. In this paper, we explore linearity,\ncrystallographic quotients, and automorphisms of certain classes of virtual\nArtin groups. Inspired from the work of Cohen, Wales, and Krammer, we construct\na linear representation of the virtual Artin group $VA[\\Gamma]$. As a\nconsequence of this representation, we deduce that if $W[\\Gamma]$ is a\nspherical Coxeter group, then $VA[\\Gamma]/PVA[\\Gamma]'$ is a crystallographic\ngroup of dimension $ |\\Phi[\\Gamma]|$ with the holonomy group $W[\\Gamma]$.\nFurther, extending an idea of Davis and Januszkiewicz, we prove that all\nright-angled virtual Artin groups admit a faithful linear representation. The\nremainder of the paper focuses on conjugacy classes and automorphisms of a\nsubclass of right-angled virtual Artin groups, $VAT_n$, associated with planar\nbraid groups called twin groups. We determine the automorphism group of $VAT_n$\nfor each $n\\geq 5$, and give a precise description of a generic automorphism.\nAs an application of this description, we prove that $VAT_n$ has the\n$R_\\infty$-property for each $n \\ge 2$.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Virtual Artin groups were recently introduced by Bellingeri, Paris, and Thiel as broad generalizations of the well-known virtual braid groups. For each Coxeter graph $\Gamma$, they defined the virtual Artin group $VA[\Gamma]$, which is generated by the corresponding Artin group $A[\Gamma]$ and the Coxeter group $W[\Gamma]$, subject to certain mixed relations inspired by the action of $W[\Gamma]$ on its root system $\Phi[\Gamma]$. There is a natural surjection $ \mathrm{VA}[\Gamma] \rightarrow W[\Gamma]$, with the kernel $PVA[\Gamma]$ representing the pure virtual Artin group. In this paper, we explore linearity, crystallographic quotients, and automorphisms of certain classes of virtual Artin groups. Inspired from the work of Cohen, Wales, and Krammer, we construct a linear representation of the virtual Artin group $VA[\Gamma]$. As a consequence of this representation, we deduce that if $W[\Gamma]$ is a spherical Coxeter group, then $VA[\Gamma]/PVA[\Gamma]'$ is a crystallographic group of dimension $ |\Phi[\Gamma]|$ with the holonomy group $W[\Gamma]$. Further, extending an idea of Davis and Januszkiewicz, we prove that all right-angled virtual Artin groups admit a faithful linear representation. The remainder of the paper focuses on conjugacy classes and automorphisms of a subclass of right-angled virtual Artin groups, $VAT_n$, associated with planar braid groups called twin groups. We determine the automorphism group of $VAT_n$ for each $n\geq 5$, and give a precise description of a generic automorphism. As an application of this description, we prove that $VAT_n$ has the $R_\infty$-property for each $n \ge 2$.
虚拟阿尔丁群的线性、晶商和自动形态
最近,贝林格里、帕里斯和蒂尔引入了虚拟阿汀群,作为著名虚拟辫子群的广义概括。对于每个柯克赛特图 $\Gamma$,他们定义了虚拟阿尔丁群 $VA[\Gamma]$,它由相应的阿尔丁群 $A[\Gamma]$ 和柯克赛特群 $W[\Gamma]$产生,并受限于由 $W[\Gamma]$ 在其根系统 $\Phi[\Gamma]$ 上的作用所启发的某些混合关系。有一个自然的投射 $\mathrm{VA}[\Gamma] \rightarrow W[\Gamma]$,其核 $PVA[\Gamma]$ 代表纯虚阿尔丁群。在本文中,我们探讨了某些类虚阿尔丁群的线性、晶体学商和自动形态。受科恩、威尔士和克拉默工作的启发,我们构建了虚阿尔丁群 $VA[\Gamma]$的线性表示。作为这个表示的结果,我们推导出如果 $W[\Gamma]$ 是非球面考克斯特群,那么 $VA[\Gamma]/PVA[\Gamma]'$ 是维数为 $ |\Phi[\Gamma]|$ 的晶体群,其全局群为 $W[\Gamma]$。此外,我们扩展了戴维斯和雅努兹凯维奇的一个观点,证明了全直角虚阿廷群允许一个忠实的线性表示。论文的其余部分集中于与被称为孪生群的planarbraid 群相关联的直角虚阿汀群的子类 $VAT_n$ 的共轭类和自形群。我们确定了每个 $n\geq 5$ 的 $VAT_n$ 的自形群,并给出了一般自形的精确描述。作为这一描述的应用,我们证明了 $VAT_n$ 对于每个 $n\ge 2$ 具有 $R_infty$ 性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信