Writing finite simple groups of Lie type as products of subset conjugates

Daniele Dona
{"title":"Writing finite simple groups of Lie type as products of subset conjugates","authors":"Daniele Dona","doi":"arxiv-2409.11246","DOIUrl":null,"url":null,"abstract":"The Liebeck-Nikolov-Shalev conjecture [LNS12] asserts that, for any finite\nsimple non-abelian group $G$ and any set $A\\subseteq G$ with $|A|\\geq 2$, $G$\nis the product of at most $N\\frac{\\log|G|}{\\log|A|}$ conjugates of $A$, for\nsome absolute constant $N$. For $G$ of Lie type, we prove that for any $\\varepsilon>0$ there is some\n$N_{\\varepsilon}$ for which $G$ is the product of at most\n$N_{\\varepsilon}\\left(\\frac{\\log|G|}{\\log|A|}\\right)^{1+\\varepsilon}$\nconjugates of either $A$ or $A^{-1}$. For symmetric sets, this improves on\nresults of Liebeck, Nikolov, and Shalev [LNS12] and Gill, Pyber, Short, and\nSzab\\'o [GPSS13]. During the preparation of this paper, the proof of the Liebeck-Nikolov-Shalev\nconjecture was completed by Lifshitz [Lif24]. Both papers use [GLPS24] as a\nstarting point. Lifshitz's argument uses heavy machinery from representation\ntheory to complete the conjecture, whereas this paper achieves a more modest\nresult by rather elementary combinatorial arguments.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Liebeck-Nikolov-Shalev conjecture [LNS12] asserts that, for any finite simple non-abelian group $G$ and any set $A\subseteq G$ with $|A|\geq 2$, $G$ is the product of at most $N\frac{\log|G|}{\log|A|}$ conjugates of $A$, for some absolute constant $N$. For $G$ of Lie type, we prove that for any $\varepsilon>0$ there is some $N_{\varepsilon}$ for which $G$ is the product of at most $N_{\varepsilon}\left(\frac{\log|G|}{\log|A|}\right)^{1+\varepsilon}$ conjugates of either $A$ or $A^{-1}$. For symmetric sets, this improves on results of Liebeck, Nikolov, and Shalev [LNS12] and Gill, Pyber, Short, and Szab\'o [GPSS13]. During the preparation of this paper, the proof of the Liebeck-Nikolov-Shalev conjecture was completed by Lifshitz [Lif24]. Both papers use [GLPS24] as a starting point. Lifshitz's argument uses heavy machinery from representation theory to complete the conjecture, whereas this paper achieves a more modest result by rather elementary combinatorial arguments.
将列类型的有限简单群写成子集共轭的乘积
Liebeck-Nikolov-Shalev猜想[LNS12]断言,对于任意有限简单非阿贝尔群 $G$ 和任意集合 $A\subseteq G$ 且 $|A|\geq 2$,对于某个绝对常数 $N$,$G$ 是 $A$ 的最多 $N\frac\{log|G|}\{log|A|}$ 共轭的乘积。对于 Lie 类型的 $G$,我们证明对于任意 $\varepsilon>0$ 都存在某个 $N_{\varepsilon}$,对于这个 $G$,它是最多 $N_{{varepsilon}\left(\frac\{log|G|}{log|A|}\right)^{1+\varepsilon}$ $A$ 或 $A^{-1}$ 共轭的乘积。对于对称集,这改进了 Liebeck、Nikolov 和 Shalev [LNS12] 以及 Gill、Pyber、Short 和 Szab\'o [GPSS13] 的结果。在本文准备期间,利夫希茨[Lif24]完成了李贝克-尼科洛夫-沙列夫猜想的证明。两篇论文都以 [GLPS24] 为起点。Lifshitz 的论证使用了表征理论的重型机械来完成猜想,而本文则通过相当基本的组合论证获得了一个较为温和的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信