A functorial approach to $n$-abelian categories

Vitor Gulisz
{"title":"A functorial approach to $n$-abelian categories","authors":"Vitor Gulisz","doi":"arxiv-2409.10438","DOIUrl":null,"url":null,"abstract":"We develop a functorial approach to the study of $n$-abelian categories by\nreformulating their axioms in terms of their categories of finitely presented\nfunctors. Such an approach allows the use of classical homological algebra and\nrepresentation theory techniques to understand higher homological algebra. As\nan application, we present two possible generalizations of the axioms \"every\nmonomorphism is a kernel\" and \"every epimorphism is a cokernel\" of an abelian\ncategory to $n$-abelian categories. We also specialize our results to modules\nover rings, thereby describing when the category of finitely generated\nprojective modules over a ring is $n$-abelian. Moreover, we establish a\ncorrespondence for $n$-abelian categories with additive generators, which\nextends the higher Auslander correspondence.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"40 4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a functorial approach to the study of $n$-abelian categories by reformulating their axioms in terms of their categories of finitely presented functors. Such an approach allows the use of classical homological algebra and representation theory techniques to understand higher homological algebra. As an application, we present two possible generalizations of the axioms "every monomorphism is a kernel" and "every epimorphism is a cokernel" of an abelian category to $n$-abelian categories. We also specialize our results to modules over rings, thereby describing when the category of finitely generated projective modules over a ring is $n$-abelian. Moreover, we establish a correspondence for $n$-abelian categories with additive generators, which extends the higher Auslander correspondence.
n$阿贝尔范畴的函数式方法
通过用有限呈现函数的范畴来重构$n$阿贝尔范畴的公理,我们开发了一种研究$n$阿贝尔范畴的函数式方法。这种方法允许使用经典的同调代数和表示论技术来理解高等同调代数。作为一种应用,我们提出了将阿贝尔范畴的公理 "每个单态都是核 "和 "每个外态都是核 "推广到 $n$ 阿贝尔范畴的两种可能。我们还把我们的结果专门用于环上的模块,从而描述了环上有限生成的投影模块范畴何时是 $n$ 阿贝尔范畴。此外,我们还为具有可加生成器的 $n$ 阿贝尔范畴建立了对应关系,从而扩展了更高的奥斯兰德对应关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信