Multiplicity One Theorem for General Spin Groups: The Archimedean Case

Melissa Emory, Yeansu Kim, Ayan Maiti
{"title":"Multiplicity One Theorem for General Spin Groups: The Archimedean Case","authors":"Melissa Emory, Yeansu Kim, Ayan Maiti","doi":"arxiv-2409.09320","DOIUrl":null,"url":null,"abstract":"Let $\\GSpin(V)$ (resp. $\\GPin(V)$) be a general spin group (resp. a general\nPin group) associated with a nondegenerate quadratic space $V$ of dimension $n$\nover an Archimedean local field $F$. For a nondegenerate quadratic space $W$ of\ndimension $n-1$ over $F$, we also consider $\\GSpin(W)$ and $\\GPin(W)$. We prove\nthe multiplicity-at-most-one theorem in the Archimedean case for a pair of\ngroups ($\\GSpin(V), \\GSpin(W)$) and also for a pair of groups ($\\GPin(V),\n\\GPin(W)$); namely, we prove that the restriction to $\\GSpin(W)$ (resp.\n$\\GPin(W)$) of an irreducible Casselman-Wallach representation of $\\GSpin(V)$\n(resp. $\\GPin(V)$) is multiplicity free.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\GSpin(V)$ (resp. $\GPin(V)$) be a general spin group (resp. a general Pin group) associated with a nondegenerate quadratic space $V$ of dimension $n$ over an Archimedean local field $F$. For a nondegenerate quadratic space $W$ of dimension $n-1$ over $F$, we also consider $\GSpin(W)$ and $\GPin(W)$. We prove the multiplicity-at-most-one theorem in the Archimedean case for a pair of groups ($\GSpin(V), \GSpin(W)$) and also for a pair of groups ($\GPin(V), \GPin(W)$); namely, we prove that the restriction to $\GSpin(W)$ (resp. $\GPin(W)$) of an irreducible Casselman-Wallach representation of $\GSpin(V)$ (resp. $\GPin(V)$) is multiplicity free.
一般自旋群的多重性一定理:阿基米德情况
让$\GSpin(V)$ (resp. $\GPin(V)$)是一个与阿基米德局部域$F$上维数为$n的非enerate二次元空间$V$相关联的一般自旋群(res. a general Pin group)。对于维数为 $n-1$ over $F$ 的非enerate 二次空间 $W$,我们也考虑 $GSpin(W)$ 和 $GPin(W)$。我们证明了一对群($\GSpin(V), \GSpin(W)$)和一对群($\GPin(V), \GPin(W)$)在阿基米德情况下的多重性定理;即,我们证明了对 $\GSpin(W)$ 的限制(respect.的一个不可还原的卡塞尔曼-瓦拉几表示是无多重性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信