Topological K-theory of quasi-BPS categories for Higgs bundles

Tudor Pădurariu, Yukinobu Toda
{"title":"Topological K-theory of quasi-BPS categories for Higgs bundles","authors":"Tudor Pădurariu, Yukinobu Toda","doi":"arxiv-2409.10800","DOIUrl":null,"url":null,"abstract":"In a previous paper, we introduced quasi-BPS categories for moduli stacks of\nsemistable Higgs bundles. Under a certain condition on the rank, Euler\ncharacteristic, and weight, the quasi-BPS categories (called BPS in this case)\nare non-commutative analogues of Hitchin integrable systems. We proposed a\nconjectural equivalence between BPS categories which swaps Euler\ncharacteristics and weights. The conjecture is inspired by the Dolbeault\nGeometric Langlands equivalence of Donagi--Pantev, by the Hausel--Thaddeus\nmirror symmetry, and by the $\\chi$-independence phenomenon for BPS invariants\nof curves on Calabi-Yau threefolds. In this paper, we show that the above conjecture holds at the level of\ntopological K-theories. When the rank and the Euler characteristic are coprime,\nsuch an isomorphism was proved by Groechenig--Shen. Along the way, we show that\nthe topological K-theory of BPS categories is isomorphic to the BPS cohomology\nof the moduli of semistable Higgs bundles.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In a previous paper, we introduced quasi-BPS categories for moduli stacks of semistable Higgs bundles. Under a certain condition on the rank, Euler characteristic, and weight, the quasi-BPS categories (called BPS in this case) are non-commutative analogues of Hitchin integrable systems. We proposed a conjectural equivalence between BPS categories which swaps Euler characteristics and weights. The conjecture is inspired by the Dolbeault Geometric Langlands equivalence of Donagi--Pantev, by the Hausel--Thaddeus mirror symmetry, and by the $\chi$-independence phenomenon for BPS invariants of curves on Calabi-Yau threefolds. In this paper, we show that the above conjecture holds at the level of topological K-theories. When the rank and the Euler characteristic are coprime, such an isomorphism was proved by Groechenig--Shen. Along the way, we show that the topological K-theory of BPS categories is isomorphic to the BPS cohomology of the moduli of semistable Higgs bundles.
希格斯束准 BPS 类别的拓扑 K 理论
在上一篇论文中,我们介绍了可迷惑希格斯束的模叠的准BPS范畴。在秩,欧拉特性和权重的特定条件下,准 BPS 范畴(这里称为 BPS)是希金可积分系统的非交换类似物。我们提出了 BPS 范畴之间的等价猜想,即交换欧拉特征和权重。这一猜想受到了多纳吉--潘特夫(Donagi--Pantev)的多尔博几何朗兰兹等价、豪塞尔--塔德斯镜像对称性以及卡拉比--尤三折上曲线的BPS不变量的$\chi$-independence现象的启发。在本文中,我们证明了上述猜想在拓扑 K 理论层面上成立。当秩和欧拉特征为共素时,这种同构由格罗切尼-申证明。同时,我们还证明了BPS范畴的拓扑K理论与半稳希格斯束模态的BPS同调同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信