Nonlocal conductance of a Majorana wire near the topological transition

Vladislav D. Kurilovich, William S. Cole, Roman M. Lutchyn, Leonid I. Glazman
{"title":"Nonlocal conductance of a Majorana wire near the topological transition","authors":"Vladislav D. Kurilovich, William S. Cole, Roman M. Lutchyn, Leonid I. Glazman","doi":"arxiv-2409.09325","DOIUrl":null,"url":null,"abstract":"We develop a theory of the nonlocal conductance $G_{RL}(V)$ for a disordered\nMajorana wire tuned near the topological transition critical point. We show\nthat the differential conductance is an odd function of bias, $G_{RL}(V) =\n-G_{RL}(-V)$. We factorize the conductance into terms describing the contacts\nbetween the wire and the normal leads, and the term describing quasiparticle\npropagation along the wire. Topological transition affects only the latter\nterm. At the critical point, the quasiparticle localization length has a\nlogarithmic singularity at the Fermi level, $l(E) \\propto \\ln(1 / E)$. This\nsingularity directly manifests in the conductance magnitude, as $\\ln |G_{RL}(V)\n/ G_Q| \\sim L / l(eV)$ for the wire of length $L \\gg l(eV)$. Tuning the wire\naway from the immediate vicinity of the critical point changes the monotonicity\nof $l(E)$. This change in monotonicty allows us to define the width of the\ncritical region around the transition point.","PeriodicalId":501137,"journal":{"name":"arXiv - PHYS - Mesoscale and Nanoscale Physics","volume":"192 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mesoscale and Nanoscale Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a theory of the nonlocal conductance $G_{RL}(V)$ for a disordered Majorana wire tuned near the topological transition critical point. We show that the differential conductance is an odd function of bias, $G_{RL}(V) = -G_{RL}(-V)$. We factorize the conductance into terms describing the contacts between the wire and the normal leads, and the term describing quasiparticle propagation along the wire. Topological transition affects only the latter term. At the critical point, the quasiparticle localization length has a logarithmic singularity at the Fermi level, $l(E) \propto \ln(1 / E)$. This singularity directly manifests in the conductance magnitude, as $\ln |G_{RL}(V) / G_Q| \sim L / l(eV)$ for the wire of length $L \gg l(eV)$. Tuning the wire away from the immediate vicinity of the critical point changes the monotonicity of $l(E)$. This change in monotonicty allows us to define the width of the critical region around the transition point.
拓扑转变附近马约拉纳线的非局部电导率
我们为拓扑转变临界点附近的无序马约拉纳线建立了非局部电导率 $G_{RL}(V)$理论。我们证明了微分电导是偏置的奇函数,即 $G_{RL}(V) =-G_{RL}(-V)$。我们将电导因式分解为描述导线与法线之间接触的项和描述类粒子沿导线传播的项。拓扑转变只影响后一项。在临界点,准粒子局域化长度在费米级具有对数奇异性,即$l(E) \propto \ln(1/E)$。对于长度为 $L \gg l(eV)$ 的导线来说,这种奇异性直接体现在电导大小上,即 $\ln |G_{RL}(V)/ G_Q| \sim L / l(eV)$。将导线从临界点附近调开会改变 $l(E)$ 的单调性。这种单调性的变化使我们能够定义临界区在过渡点附近的宽度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信