Generalised 6j symbols over the category of $G$-graded vector spaces

Fabio Lischka
{"title":"Generalised 6j symbols over the category of $G$-graded vector spaces","authors":"Fabio Lischka","doi":"arxiv-2409.09055","DOIUrl":null,"url":null,"abstract":"Any choice of a spherical fusion category defines an invariant of oriented\nclosed 3-manifolds, which is computed by choosing a triangulation of the\nmanifold and considering a state sum model that assigns a 6j symbol to every\ntetrahedron in this triangulation. This approach has been generalized to\noriented closed 3-manifolds with defect data by Meusburger. In a recent paper,\nshe constructed a family of invariants for such manifolds parametrised by the\nchoice of certain spherical fusion categories, bimodule categories, finite\nbimodule functors and module natural transformations. Meusburger defined\ngeneralised 6j symbols for these objects, and introduces a state sum model that\nassigns a generalised 6j symbol to every tetrahedron in the triangulation of a\nmanifold with defect data, where the type of 6j symbol used depends on what\ndefect data occur within the tetrahedron. The present work provides non-trivial\nexamples of suitable bimodule categories, bimodule functors and module natural\ntransformation, all over categories of $G$-graded vector spaces. Our main\nresult is the description of module functors in terms of matrices, which allows\nus to classify these functors when $G$ is a finite cyclic group. Furthermore,\nwe calculate the generalised 6j symbols for categories of $G$-graded vector\nspaces, (bi-)module categories over such categories and (bi-)module functors.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Any choice of a spherical fusion category defines an invariant of oriented closed 3-manifolds, which is computed by choosing a triangulation of the manifold and considering a state sum model that assigns a 6j symbol to every tetrahedron in this triangulation. This approach has been generalized to oriented closed 3-manifolds with defect data by Meusburger. In a recent paper, she constructed a family of invariants for such manifolds parametrised by the choice of certain spherical fusion categories, bimodule categories, finite bimodule functors and module natural transformations. Meusburger defined generalised 6j symbols for these objects, and introduces a state sum model that assigns a generalised 6j symbol to every tetrahedron in the triangulation of a manifold with defect data, where the type of 6j symbol used depends on what defect data occur within the tetrahedron. The present work provides non-trivial examples of suitable bimodule categories, bimodule functors and module natural transformation, all over categories of $G$-graded vector spaces. Our main result is the description of module functors in terms of matrices, which allows us to classify these functors when $G$ is a finite cyclic group. Furthermore, we calculate the generalised 6j symbols for categories of $G$-graded vector spaces, (bi-)module categories over such categories and (bi-)module functors.
$G$等级向量空间类别上的广义6j符号
球形融合范畴的任何选择都定义了定向封闭 3-manifolds 的不变量,其计算方法是选择它们的一个三角剖分,并考虑一个状态和模型,为该三角剖分中的每个四面体分配一个 6j 符号。Meusburger 已将这一方法推广到具有缺陷数据的定向封闭 3-manifold。在最近的一篇论文中,她为这类流形构建了一个不变量族,其参数是对某些球形融合范畴、双模子范畴、有限双模子函数和模子自然变换的选择。Meusburger 为这些对象定义了广义 6j 符号,并引入了一个状态和模型,为具有缺陷数据的流形三角剖分中的每个四面体分配一个广义 6j 符号,其中使用的 6j 符号类型取决于四面体中出现的缺陷数据。本研究提供了合适的双模范畴、双模函子和模子自然变换的非难例,它们都在 $G$ 梯度向量空间的范畴之上。我们的主要成果是用矩阵描述模块函子,这使我们能在 $G$ 是有限循环群时对这些函子进行分类。此外,我们还计算了 $G$ 梯度向量空间类别、这些类别上的(双)模类别和(双)模函数的广义 6j 符号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信