Non-unitary Wightman CFTs and non-unitary vertex algebras

Sebastiano Carpi, Christopher Raymond, Yoh Tanimoto, James E. Tener
{"title":"Non-unitary Wightman CFTs and non-unitary vertex algebras","authors":"Sebastiano Carpi, Christopher Raymond, Yoh Tanimoto, James E. Tener","doi":"arxiv-2409.08454","DOIUrl":null,"url":null,"abstract":"We give an equivalence of categories between: (i) M\\\"obius vertex algebras\nwhich are equipped with a choice of generating family of quasiprimary vectors,\nand (ii) (not-necessarily-unitary) M\\\"obius-covariant Wightman conformal field\ntheories on the unit circle. We do not impose any technical restrictions on the\ntheories considered (such as finite-dimensional conformal weight spaces or\nsimplicity), yielding the most general equivalence between these two\naxiomatizations of two-dimensional chiral conformal field theory. This provides\nnew opportunities to study non-unitary vertex algebras using the lens of\nalgebraic conformal field theory and operator algebras, which we demonstrate by\nestablishing a non-unitary version of the Reeh-Schlieder theorem.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We give an equivalence of categories between: (i) M\"obius vertex algebras which are equipped with a choice of generating family of quasiprimary vectors, and (ii) (not-necessarily-unitary) M\"obius-covariant Wightman conformal field theories on the unit circle. We do not impose any technical restrictions on the theories considered (such as finite-dimensional conformal weight spaces or simplicity), yielding the most general equivalence between these two axiomatizations of two-dimensional chiral conformal field theory. This provides new opportunities to study non-unitary vertex algebras using the lens of algebraic conformal field theory and operator algebras, which we demonstrate by establishing a non-unitary version of the Reeh-Schlieder theorem.
非统一维特曼 CFT 和非统一顶点代数
我们给出了以下范畴之间的等价性:(i) 带有准主向量生成族选择的莫比乌斯顶点代数,以及 (ii) 单位圆上的(不一定是单元的)莫比乌斯共变怀特曼共形场理论。我们没有对所考虑的理论施加任何技术限制(如有限维共形权重空间或简单性),从而在二维手性共形场理论的这两个轴化之间产生了最一般的等价性。这为利用代数共形场论和算子代数的视角研究非单元顶点代数提供了新的机会,我们通过建立非单元版本的里赫-施里德尔定理证明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信