Bimodules over twisted Zhu algebras and a construction of tensor product of twisted modules for vertex operator algebras

Yiyi Zhu
{"title":"Bimodules over twisted Zhu algebras and a construction of tensor product of twisted modules for vertex operator algebras","authors":"Yiyi Zhu","doi":"arxiv-2409.08995","DOIUrl":null,"url":null,"abstract":"Let $V$ be a simple, non-negatively-graded, rational, $C_2$-cofinite, and\nself dual vertex operator algebra, $g_1, g_2, g_3$ be three commuting finitely\nordered automorphisms of $V$ such that $g_1g_2=g_3$ and $g_i^T=1$ for $i=1, 2,\n3$ and $T\\in \\N$. Suppose $M^1$ is a $g_1$-twisted module. For any $n, m\\in\n\\frac{1}{T}\\N$, we construct an $A_{g_3, n}(V)$-$A_{g_2, m}(V)$-bimodule\n$\\mathcal{A}_{g_3, g_2, n, m}(M^1)$ associated to the quadruple $(M^1, g_1,\ng_2, g_3)$. Given an $A_{g_2, m}(V)$-module $U$, an admissible $g_3$-twisted\nmodule $\\mathcal{M}(M^1, U)$ is constructed. For the quadruple $(V, 1, g, g)$\nfor some $g\\in \\text{Aut}(V)$, $\\mathcal{A}_{g, g, n, m}(V)$ coincides with the\n$A_{g, n}(V)$-$A_{g, m}(V)$-bimodules $A_{g, n, m}(V)$ constructed by\nDong-Jiang, and $\\mathcal{M}(V, U)$ is the generalized Verma type admissible\n$g$-twisted module generated by $U$. For an irreducible $g_1$-twisted module\n$M^1$ and an irreducible $g_2$-twisted module $M^2$, we give a construction of\ntensor product of $M^1$ and $M^2$ using the bimodule theory developed in this\npaper. As an application, a twisted version of the fusion rules theorem is\nestablished.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $V$ be a simple, non-negatively-graded, rational, $C_2$-cofinite, and self dual vertex operator algebra, $g_1, g_2, g_3$ be three commuting finitely ordered automorphisms of $V$ such that $g_1g_2=g_3$ and $g_i^T=1$ for $i=1, 2, 3$ and $T\in \N$. Suppose $M^1$ is a $g_1$-twisted module. For any $n, m\in \frac{1}{T}\N$, we construct an $A_{g_3, n}(V)$-$A_{g_2, m}(V)$-bimodule $\mathcal{A}_{g_3, g_2, n, m}(M^1)$ associated to the quadruple $(M^1, g_1, g_2, g_3)$. Given an $A_{g_2, m}(V)$-module $U$, an admissible $g_3$-twisted module $\mathcal{M}(M^1, U)$ is constructed. For the quadruple $(V, 1, g, g)$ for some $g\in \text{Aut}(V)$, $\mathcal{A}_{g, g, n, m}(V)$ coincides with the $A_{g, n}(V)$-$A_{g, m}(V)$-bimodules $A_{g, n, m}(V)$ constructed by Dong-Jiang, and $\mathcal{M}(V, U)$ is the generalized Verma type admissible $g$-twisted module generated by $U$. For an irreducible $g_1$-twisted module $M^1$ and an irreducible $g_2$-twisted module $M^2$, we give a construction of tensor product of $M^1$ and $M^2$ using the bimodule theory developed in this paper. As an application, a twisted version of the fusion rules theorem is established.
扭曲朱代数上的双模和顶点算子代数扭曲模块张量积的构建
假设 $V$ 是一个简单的、非负阶、有理的、$C_2$ 无穷的、自对偶顶点算子代数,$g_1, g_2, g_3$ 是 $V$ 的三个换向有限有序自变量,使得 $g_1g_2=g_3$ 和 $g_i^T=1$ for $i=1, 2,3$ and $T\in \N$。假设 $M^1$ 是一个 $g_1$ 扭转模块。对于任意 $n, m\in\frac{1}{T}\N$, 我们构造一个 $A_{g_3, n}(V)$-$A_{g_2, m}(V)$-双模块$\mathcal{A}_{g_3, g_2, n, m}(M^1)$,它与四元组 $(M^1, g_1,g_2, g_3)$ 相关联。给定$A_{g_2, m}(V)$模块$U$,就可以构造出一个可容许的$g_3$扭曲模块$mathcal{M}(M^1, U)$。对于某个 $g\in \text{Aut}(V)$ 的四元$(V, 1, g, g)$,$\mathcal{A}_{g, g, n, m}(V)$与$A_{g, n}(V)$-$A_{g, m}(V)$双模$A_{g、n, m}(V)$重合,而 $\mathcal{M}(V, U)$ 是由 $U$ 生成的广义维尔马型可容许 $g$ 扭转模块。对于一个不可还原的$g_1$扭曲模块$M^1$和一个不可还原的$g_2$扭曲模块$M^2$,我们利用本文发展的双模块理论给出了$M^1$和$M^2$的张量积的构造。作为应用,我们建立了融合规则定理的扭曲版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信