Existence of a unique solution to parametrized systems of generalized polynomial equations

Abhishek Deshpande, Stefan Müller
{"title":"Existence of a unique solution to parametrized systems of generalized polynomial equations","authors":"Abhishek Deshpande, Stefan Müller","doi":"arxiv-2409.11288","DOIUrl":null,"url":null,"abstract":"We consider solutions to parametrized systems of generalized polynomial\nequations (with real exponents) in $n$ positive variables, involving $m$\nmonomials with positive parameters; that is, $x\\in\\mathbb{R}^n_>$ such that ${A\n\\, (c \\circ x^B)=0}$ with coefficient matrix $A\\in\\mathbb{R}^{l \\times m}$,\nexponent matrix $B\\in\\mathbb{R}^{n \\times m}$, parameter vector\n$c\\in\\mathbb{R}^m_>$, and componentwise product $\\circ$. As our main result, we characterize the existence of a unique solution\n(modulo an exponential manifold) for all parameters in terms of the relevant\ngeometric objects of the polynomial system, namely the $\\textit{coefficient\npolytope}$ and the $\\textit{monomial dependency subspace}$. We show that unique\nexistence is equivalent to the bijectivity of a certain moment/power map, and\nwe characterize the bijectivity of this map using Hadamard's global inversion\ntheorem. Furthermore, we provide sufficient conditions in terms of sign vectors\nof the geometric objects, thereby obtaining a multivariate Descartes' rule of\nsigns for exactly one solution.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider solutions to parametrized systems of generalized polynomial equations (with real exponents) in $n$ positive variables, involving $m$ monomials with positive parameters; that is, $x\in\mathbb{R}^n_>$ such that ${A \, (c \circ x^B)=0}$ with coefficient matrix $A\in\mathbb{R}^{l \times m}$, exponent matrix $B\in\mathbb{R}^{n \times m}$, parameter vector $c\in\mathbb{R}^m_>$, and componentwise product $\circ$. As our main result, we characterize the existence of a unique solution (modulo an exponential manifold) for all parameters in terms of the relevant geometric objects of the polynomial system, namely the $\textit{coefficient polytope}$ and the $\textit{monomial dependency subspace}$. We show that unique existence is equivalent to the bijectivity of a certain moment/power map, and we characterize the bijectivity of this map using Hadamard's global inversion theorem. Furthermore, we provide sufficient conditions in terms of sign vectors of the geometric objects, thereby obtaining a multivariate Descartes' rule of signs for exactly one solution.
广义多项式方程参数化系统唯一解的存在性
我们考虑的是在 $n$ 正变量中,涉及具有正参数的 $m$ 单项式的广义多项式方程参数化系统(具有实指数)的解;即,$x/in/mathbb{R}^n_>$使得${A/, (c circ x^B)=0}$ 具有系数矩阵$A/in/mathbb{R}^{l次m}$,指数矩阵$B/in/mathbb{R}^{n次m}$,参数向量$c/in/mathbb{R}^m_>$,以及分量乘积$circ$。作为我们的主要结果,我们用多项式系统的相关几何对象,即 $\textit{coefficientpolytope}$ 和 $\textit{monomial dependency subspace}$ 来描述所有参数的唯一解(模为指数流形)的存在性。我们证明了唯一存在性等价于某个矩/幂映射的双射性,并利用哈达玛的全局反演定理描述了该映射的双射性。此外,我们还提供了几何对象符号向量的充要条件,从而得到了一解的多元笛卡尔符号法则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信