MMP for Enriques pairs and singular Enriques varieties

Francesco Antonio Denisi, Ángel David Ríos Ortiz, Nikolaos Tsakanikas, Zhixin Xie
{"title":"MMP for Enriques pairs and singular Enriques varieties","authors":"Francesco Antonio Denisi, Ángel David Ríos Ortiz, Nikolaos Tsakanikas, Zhixin Xie","doi":"arxiv-2409.12054","DOIUrl":null,"url":null,"abstract":"We introduce and study the class of primitive Enriques varieties, whose\nsmooth members are Enriques manifolds. We provide several examples and we\ndemonstrate that this class is stable under the operations of the Minimal Model\nProgram (MMP). In particular, given an Enriques manifold $Y$ and an effective\n$\\mathbb{R}$-divisor $B_Y$ on $Y$ such that the pair $(Y,B_Y)$ is log\ncanonical, we prove that any $(K_Y+B_Y)$-MMP terminates with a minimal model\n$(Y',B_{Y'})$ of $(Y,B_Y)$, where $Y'$ is a $\\mathbb{Q}$-factorial primitive\nEnriques variety with canonical singularities. Finally, we investigate the\nasymptotic theory of Enriques manifolds.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce and study the class of primitive Enriques varieties, whose smooth members are Enriques manifolds. We provide several examples and we demonstrate that this class is stable under the operations of the Minimal Model Program (MMP). In particular, given an Enriques manifold $Y$ and an effective $\mathbb{R}$-divisor $B_Y$ on $Y$ such that the pair $(Y,B_Y)$ is log canonical, we prove that any $(K_Y+B_Y)$-MMP terminates with a minimal model $(Y',B_{Y'})$ of $(Y,B_Y)$, where $Y'$ is a $\mathbb{Q}$-factorial primitive Enriques variety with canonical singularities. Finally, we investigate the asymptotic theory of Enriques manifolds.
恩里克对和奇异恩里克变种的 MMP
我们介绍并研究了一类原始恩里克流形,其光滑成员是恩里克流形。我们提供了几个例子,并证明该类在最小模型程序(MMP)的操作下是稳定的。特别是,给定一个恩里克流形$Y$和$Y$上的有效$(Y,B_Y)$分维数$B_Y$,使得这对$(Y,B_Y)$是对数、我们证明任何 $(K_Y+B_Y)$-MMP 都会以 $(Y,B_Y)$ 的最小模型$(Y',B_{Y'})$ 终止,其中$Y'$ 是一个具有对数奇异性的、$mathbb{Q}$因子基元恩里克变种。最后,我们研究了恩里克流形的渐近理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信