Proof of the geometric Langlands conjecture IV: ambidexterity

D. Arinkin, D. Beraldo, L. Chen, J. Faergeman, D. Gaitsgory, K. Lin, S. Raskin, N. Rozenblyum
{"title":"Proof of the geometric Langlands conjecture IV: ambidexterity","authors":"D. Arinkin, D. Beraldo, L. Chen, J. Faergeman, D. Gaitsgory, K. Lin, S. Raskin, N. Rozenblyum","doi":"arxiv-2409.08670","DOIUrl":null,"url":null,"abstract":"This paper performs the following steps toward the proof of GLC in the de\nRham setting: (i) We deduce GLC for G=GL_n; (ii) We prove that the Langlands functor L_G constructed in [GLC1], when\nrestricted to the cuspidal category, is ambidextrous; (iii) We reduce GLC to the study of a certain classical vector bundle with\nconnection on the stack of irreducible local systems; (iv) We prove that GLC is equivalent to the contractibility of the space of\ngeneric oper structures on irreducible local systems; (v) Using [BKS], we deduce GLC for classical groups.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper performs the following steps toward the proof of GLC in the de Rham setting: (i) We deduce GLC for G=GL_n; (ii) We prove that the Langlands functor L_G constructed in [GLC1], when restricted to the cuspidal category, is ambidextrous; (iii) We reduce GLC to the study of a certain classical vector bundle with connection on the stack of irreducible local systems; (iv) We prove that GLC is equivalent to the contractibility of the space of generic oper structures on irreducible local systems; (v) Using [BKS], we deduce GLC for classical groups.
几何朗兰兹猜想的证明IV:伏羲性
本文将采取以下步骤来证明 deRham 背景下的 GLC:(i) 我们推导出了 G=GL_n 的 GLC;(ii) 我们证明了[GLC1]中构造的朗兰兹函子 L_G,当被限制在簕杜鹃类时,它是ambidextrous 的;(iii) 我们把 GLC 简化为研究不可还原局部系统栈上的某个经典向量束与连接;(iv) 我们证明 GLC 等价于不可还原局部系统上一般 oper 结构空间的可收缩性; (v) 利用[BKS],我们推导出经典群的 GLC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信