Stable pairs on local curves and Bethe roots

Maximilian Schimpf
{"title":"Stable pairs on local curves and Bethe roots","authors":"Maximilian Schimpf","doi":"arxiv-2409.09508","DOIUrl":null,"url":null,"abstract":"We give an explicit formula for the descendent stable pair invariants of all\n(absolute) local curves in terms of certain power series called Bethe roots,\nwhich also appear in the physics/representation theory literature. We derive\nnew explicit descriptions for the Bethe roots which are of independent\ninterest. From this we derive rationality, functional equation and a\ncharacterization of poles for the full descendent stable pair theory of local\ncurves as conjectured by Pandharipande and Pixton. We also sketch how our\nmethods give a new approach to the spectrum of quantum multiplication on\n$\\mathsf{Hilb}^n(\\mathbf{C}^2)$.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We give an explicit formula for the descendent stable pair invariants of all (absolute) local curves in terms of certain power series called Bethe roots, which also appear in the physics/representation theory literature. We derive new explicit descriptions for the Bethe roots which are of independent interest. From this we derive rationality, functional equation and a characterization of poles for the full descendent stable pair theory of local curves as conjectured by Pandharipande and Pixton. We also sketch how our methods give a new approach to the spectrum of quantum multiplication on $\mathsf{Hilb}^n(\mathbf{C}^2)$.
局部曲线上的稳定对和贝特根
我们给出了所有(绝对)局部曲线的后代稳定对不变式的明确公式,这些公式是以某些称为贝特根的幂级数表示的,这些幂级数也出现在物理学/表示论文献中。我们对贝特根进行了新的明确描述,这也是我们的兴趣所在。由此,我们推导出潘达里潘德和皮克斯顿猜想的局部曲线的全后裔稳定对理论的合理性、函数方程和极点特征。我们还简要介绍了我们的方法如何为$\mathsf{Hilb}^n(\mathbf{C}^2)$上的量子乘法谱提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信