Correlated Gromov-Witten invariants

Thomas Blomme, Francesca Carocci
{"title":"Correlated Gromov-Witten invariants","authors":"Thomas Blomme, Francesca Carocci","doi":"arxiv-2409.09472","DOIUrl":null,"url":null,"abstract":"We introduce a geometric refinement of Gromov-Witten invariants for $\\mathbb\nP^1$-bundles relative to the natural fiberwise boundary structure. We call\nthese refined invariant correlated Gromov-Witten invariants. Furthermore we\nprove a refinement of the degeneration formula keeping track of the\ncorrelation. Finally, combining certain invariance properties of the correlated\ninvariant, a local computation and the refined degeneration formula we follow\nfloor diagrams techniques to prove regularity results for the generating series\nof the invariants in the case of $\\mathbb P^1$-bundles over elliptic curves.\nSuch invariants are expected to play a role in the degeneration formula for\nreduced Gromov-Witten invariants for abelian and K3 surfaces.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"211 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a geometric refinement of Gromov-Witten invariants for $\mathbb P^1$-bundles relative to the natural fiberwise boundary structure. We call these refined invariant correlated Gromov-Witten invariants. Furthermore we prove a refinement of the degeneration formula keeping track of the correlation. Finally, combining certain invariance properties of the correlated invariant, a local computation and the refined degeneration formula we follow floor diagrams techniques to prove regularity results for the generating series of the invariants in the case of $\mathbb P^1$-bundles over elliptic curves. Such invariants are expected to play a role in the degeneration formula for reduced Gromov-Witten invariants for abelian and K3 surfaces.
相关格罗莫夫-维滕不变式
我们为 $\mathbbP^1$ 束引入了相对于自然纤维边界结构的几何细化格罗莫夫-维滕不变式。我们称这些细化不变式为相关格罗莫夫-维滕不变式。此外,我们还证明了跟踪相关性的退化公式的改进。最后,结合相关不变式的某些不变性质、局部计算和细化退化公式,我们利用底图技术证明了椭圆曲线上 $\mathbb P^1$ 束情况下不变式的产生序列的正则性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信