On the Satake correspondence for the equivariant quantum differential equations and qKZ difference equations of Grassmannians

Giordano Cotti, Alexander Varchenko
{"title":"On the Satake correspondence for the equivariant quantum differential equations and qKZ difference equations of Grassmannians","authors":"Giordano Cotti, Alexander Varchenko","doi":"arxiv-2409.09657","DOIUrl":null,"url":null,"abstract":"We consider the joint system of equivariant quantum differential equations\n(qDE) and qKZ difference equations for the Grassmannian $G(k,n)$, which\nparametrizes $k$-dimensional subspaces of $\\mathbb{C}^n$. First, we establish a\nconnection between this joint system for $G(k,n)$ and the corresponding system\nfor the projective space $\\mathbb{P}^{n-1}$. Specifically, we show that, under\nsuitable \\textit{Satake identifications} of the equivariant cohomologies of\n$G(k,n)$ and $\\mathbb{P}^{n-1}$, the joint system for $G(k,n)$ is gauge\nequivalent to a differential-difference system on the $k$-th exterior power of\nthe cohomology of $\\mathbb{P}^{n-1}$. Secondly, we demonstrate that the \\textcyr{B}-theorem for Grassmannians, as\nstated in arXiv:1909.06582, arXiv:2203.03039, is compatible with the Satake\nidentification. This implies that the \\textcyr{B}-theorem for\n$\\mathbb{P}^{n-1}$ extends to $G(k,n)$ through the Satake identification. As a\nconsequence, we derive determinantal formulas and new integral representations\nfor multi-dimensional hypergeometric solutions of the joint qDE and qKZ system\nfor $G(k,n)$. Finally, we analyze the Stokes phenomenon for the joint system of qDE and qKZ\nequations associated with $G(k,n)$. We prove that the Stokes bases of solutions\ncorrespond to explicit $K$-theoretical classes of full exceptional collections\nin the derived category of equivariant coherent sheaves on $G(k,n)$.\nFurthermore, we show that the Stokes matrices equal the Gram matrices of the\nequivariant Euler-Poincar\\'e-Grothendieck pairing with respect to these\nexceptional $K$-theoretical bases.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the joint system of equivariant quantum differential equations (qDE) and qKZ difference equations for the Grassmannian $G(k,n)$, which parametrizes $k$-dimensional subspaces of $\mathbb{C}^n$. First, we establish a connection between this joint system for $G(k,n)$ and the corresponding system for the projective space $\mathbb{P}^{n-1}$. Specifically, we show that, under suitable \textit{Satake identifications} of the equivariant cohomologies of $G(k,n)$ and $\mathbb{P}^{n-1}$, the joint system for $G(k,n)$ is gauge equivalent to a differential-difference system on the $k$-th exterior power of the cohomology of $\mathbb{P}^{n-1}$. Secondly, we demonstrate that the \textcyr{B}-theorem for Grassmannians, as stated in arXiv:1909.06582, arXiv:2203.03039, is compatible with the Satake identification. This implies that the \textcyr{B}-theorem for $\mathbb{P}^{n-1}$ extends to $G(k,n)$ through the Satake identification. As a consequence, we derive determinantal formulas and new integral representations for multi-dimensional hypergeometric solutions of the joint qDE and qKZ system for $G(k,n)$. Finally, we analyze the Stokes phenomenon for the joint system of qDE and qKZ equations associated with $G(k,n)$. We prove that the Stokes bases of solutions correspond to explicit $K$-theoretical classes of full exceptional collections in the derived category of equivariant coherent sheaves on $G(k,n)$. Furthermore, we show that the Stokes matrices equal the Gram matrices of the equivariant Euler-Poincar\'e-Grothendieck pairing with respect to these exceptional $K$-theoretical bases.
论格拉斯曼等变量子微分方程与 qKZ 差分方程的 Satake 对应关系
我们考虑格拉斯曼$G(k,n)$的等变量子微分方程(qDE)和qKZ差分方程的联合系统,它参数化了$\mathbb{C}^n$的k$维子空间。首先,我们建立了$G(k,n)$的联合系统与投影空间$\mathbb{P}^{n-1}$的相应系统之间的联系。具体地说,我们证明在$G(k,n)$和$mathbb{P}^{n-1}$的等变同调的合适的(textit{Satake identifications})条件下,$G(k,n)$的联合系统与$mathbb{P}^{n-1}$同调的$k$外部幂上的微分差分系统是等价的。其次,我们证明了arXiv:1909.06582和arXiv:2203.03039中阐述的格拉斯曼的(textcyr{B}定理)与 "佐竹识别 "是相容的。这意味着通过 Satake 识别,$mathbb{P}^{n-1}$ 的 \textcyr{B}-theorem 可以扩展到 $G(k,n)$。因此,我们推导出了$G(k,n)$的qDE和qKZ联合系统的多维超几何解的行列式公式和新的积分表示。最后,我们分析了与 $G(k,n)$ 相关的 qDE 和 qKZ 联合方程组的斯托克斯现象。此外,我们还证明斯托克斯矩阵等于关于这些特殊的 $K$ 理论基的等变欧拉-平卡/'e-格罗thendieck 对的格兰矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信