Picard Groups of Spectral Varieties and Moduli of Higgs Sheaves

Xiaoyu Su, Bin Wang
{"title":"Picard Groups of Spectral Varieties and Moduli of Higgs Sheaves","authors":"Xiaoyu Su, Bin Wang","doi":"arxiv-2409.10296","DOIUrl":null,"url":null,"abstract":"We study moduli spaces of Higgs sheaves valued in line bundles and the\nassociated Hitchin maps on surfaces. We first work out Picard groups of generic\n(very general) spectral varieties which holds for dimension of at least 2,\ni.e., a Noether--Lefschetz type theorem for spectral varieties. We then apply\nthis to obtain a necessary and sufficient condition for the non-emptyness of\ngeneric Hitchin fibers for surfaces cases. Then we move on to detect the\ngeometry of the moduli spaces of Higgs sheaves as the second Chern class\nvaries.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study moduli spaces of Higgs sheaves valued in line bundles and the associated Hitchin maps on surfaces. We first work out Picard groups of generic (very general) spectral varieties which holds for dimension of at least 2, i.e., a Noether--Lefschetz type theorem for spectral varieties. We then apply this to obtain a necessary and sufficient condition for the non-emptyness of generic Hitchin fibers for surfaces cases. Then we move on to detect the geometry of the moduli spaces of Higgs sheaves as the second Chern class varies.
谱变的皮卡群和希格斯剪切的模数
我们研究线束中估值的希格斯剪的模空间以及曲面上相关的希钦映射。我们首先计算了一般(非常一般)谱变的皮卡群,它在维数至少为 2 时成立,即谱变的诺特--勒夫谢茨(Noether--Lefschetz)型定理。然后,我们应用这个定理得到了表面情况下一般希氏纤维非空的必要条件和充分条件。然后,我们继续探测希格斯剪切的模空间的几何性质,因为第二切恩类会发生变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信