Bridging the Rossby number gap in rapidly rotating thermal convection

Adrian van Kan, Keith Julien, Benjamin Miquel, Edgar Knobloch
{"title":"Bridging the Rossby number gap in rapidly rotating thermal convection","authors":"Adrian van Kan, Keith Julien, Benjamin Miquel, Edgar Knobloch","doi":"arxiv-2409.08536","DOIUrl":null,"url":null,"abstract":"Geophysical and astrophysical fluid flows are typically buoyantly driven and\nare strongly constrained by planetary rotation at large scales. Rapidly\nrotating Rayleigh-B\\'enard convection (RRRBC) provides a paradigm for direct\nnumerical simulations (DNS) and laboratory studies of such flows, but the\naccessible parameter space remains restricted to moderately fast rotation\n(Ekman numbers $\\rm Ek \\gtrsim 10^{-8}$), while realistic $\\rm Ek$ for\nastro-/geophysical applications are significantly smaller. Reduced equations of\nmotion, the non-hydrostatic quasi-geostrophic equations describing the\nleading-order behavior in the limit of rapid rotation ($\\rm Ek \\to 0$) cannot\ncapture finite rotation effects, leaving the physically most relevant part of\nparameter space with small but finite $\\rm Ek$ currently inaccessible. Here, we\nintroduce the rescaled incompressible Navier-Stokes equations (RiNSE), a\nreformulation of the Navier-Stokes-Boussinesq equations informed by the\nscalings valid for $\\rm Ek\\to 0$. We provide the first full DNS of RRRBC at\nunprecedented rotation strengths down to $\\rm Ek=10^{-15}$ and below and show\nthat the RiNSE converge to the asymptotically reduced equations.","PeriodicalId":501270,"journal":{"name":"arXiv - PHYS - Geophysics","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Geophysical and astrophysical fluid flows are typically buoyantly driven and are strongly constrained by planetary rotation at large scales. Rapidly rotating Rayleigh-B\'enard convection (RRRBC) provides a paradigm for direct numerical simulations (DNS) and laboratory studies of such flows, but the accessible parameter space remains restricted to moderately fast rotation (Ekman numbers $\rm Ek \gtrsim 10^{-8}$), while realistic $\rm Ek$ for astro-/geophysical applications are significantly smaller. Reduced equations of motion, the non-hydrostatic quasi-geostrophic equations describing the leading-order behavior in the limit of rapid rotation ($\rm Ek \to 0$) cannot capture finite rotation effects, leaving the physically most relevant part of parameter space with small but finite $\rm Ek$ currently inaccessible. Here, we introduce the rescaled incompressible Navier-Stokes equations (RiNSE), a reformulation of the Navier-Stokes-Boussinesq equations informed by the scalings valid for $\rm Ek\to 0$. We provide the first full DNS of RRRBC at unprecedented rotation strengths down to $\rm Ek=10^{-15}$ and below and show that the RiNSE converge to the asymptotically reduced equations.
缩小快速旋转热对流中的罗斯比数差距
地球物理和天体物理流体流动通常由浮力驱动,在大尺度上受到行星自转的强烈制约。快速旋转瑞利对流(RRRBC)为此类流体的直接数值模拟(DNS)和实验室研究提供了范例,但可获取的参数空间仍然局限于中速旋转(Ekman 数 $\rm Ek \gtrsim 10^{-8}$),而用于地球/地球物理应用的现实 $\rm Ek$ 则要小得多。描述快速旋转($\rm Ek \to 0$)极限中前导阶行为的非流体静力学准地转方程无法捕捉有限旋转效应,使得参数空间中物理上最相关的、具有较小但有限的 $\rm Ek$ 的部分目前无法进入。在这里,我们引入了重标定不可压缩纳维-斯托克斯方程(RiNSE),它是纳维-斯托克斯-布西尼斯克方程的一种形式,其标定结果对 $\rm Ek\to 0$ 有效。我们首次提供了前所未见的旋转强度低至$\rm Ek=10^{-15}$及以下的RRRBC的完整DNS,并证明RiNSE收敛于渐近简化方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信