Fabrication and characterization of nanocomposite hydrogel based N-succinyl chitosan/oxidized tragacanth gum/silver nanoparticles for biomedical materials
IF 2.7 4区 材料科学Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Fabrication and characterization of nanocomposite hydrogel based N-succinyl chitosan/oxidized tragacanth gum/silver nanoparticles for biomedical materials","authors":"Atefeh Afroozan Bazghaleh, Mojtaba Akbari Dogolsar, Jalal Barzin","doi":"10.1557/s43578-024-01437-y","DOIUrl":null,"url":null,"abstract":"<p>Nowadays, there is significant interest in hydrogels that have injectable, self-healing, and antibacterial properties. These features make them highly desirable for use in wound dressings. In this study, a class of biocompatible nanocomposite hydrogels was designed based on oxidized tragacanth gum (OTG), N-succinyl chitosan (NSC), and silver nanoparticles (AgNPs) for biomedical applications. To obtain the nanocomposite hydrogels containing different AgNP content, we utilized silver nanoparticles at concentrations of 4, 6, and 8 mg/mL. The OTG/NSC/Ag hydrogel demonstrated superior mechanical properties compared with the OTG/NSC hydrogel without AgNP. The hydrogels also exhibited rapid gelation ( < 60 s), sufficient swelling capacity, and outstanding injectability. The hemolysis and antibacterial tests demonstrated that the produced hydrogels possess non-hemolytic and antibacterial properties. In addition, the hydrogels loaded with AgNPs exhibited low toxicity to fibroblast cells (L929), thus demonstrating acceptable biocompatibility. These findings indicated that the prepared hydrogels could be utilized as novel wound dressing materials.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":16306,"journal":{"name":"Journal of Materials Research","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43578-024-01437-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nowadays, there is significant interest in hydrogels that have injectable, self-healing, and antibacterial properties. These features make them highly desirable for use in wound dressings. In this study, a class of biocompatible nanocomposite hydrogels was designed based on oxidized tragacanth gum (OTG), N-succinyl chitosan (NSC), and silver nanoparticles (AgNPs) for biomedical applications. To obtain the nanocomposite hydrogels containing different AgNP content, we utilized silver nanoparticles at concentrations of 4, 6, and 8 mg/mL. The OTG/NSC/Ag hydrogel demonstrated superior mechanical properties compared with the OTG/NSC hydrogel without AgNP. The hydrogels also exhibited rapid gelation ( < 60 s), sufficient swelling capacity, and outstanding injectability. The hemolysis and antibacterial tests demonstrated that the produced hydrogels possess non-hemolytic and antibacterial properties. In addition, the hydrogels loaded with AgNPs exhibited low toxicity to fibroblast cells (L929), thus demonstrating acceptable biocompatibility. These findings indicated that the prepared hydrogels could be utilized as novel wound dressing materials.
期刊介绍:
Journal of Materials Research (JMR) publishes the latest advances about the creation of new materials and materials with novel functionalities, fundamental understanding of processes that control the response of materials, and development of materials with significant performance improvements relative to state of the art materials. JMR welcomes papers that highlight novel processing techniques, the application and development of new analytical tools, and interpretation of fundamental materials science to achieve enhanced materials properties and uses. Materials research papers in the following topical areas are welcome.
• Novel materials discovery
• Electronic, photonic and magnetic materials
• Energy Conversion and storage materials
• New thermal and structural materials
• Soft materials
• Biomaterials and related topics
• Nanoscale science and technology
• Advances in materials characterization methods and techniques
• Computational materials science, modeling and theory