Interface stability of ultrasonic additively manufactured Zircaloy-4 during hydrothermal corrosion

IF 2.8 2区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Interface stability of ultrasonic additively manufactured Zircaloy-4 during hydrothermal corrosion","authors":"","doi":"10.1016/j.jnucmat.2024.155376","DOIUrl":null,"url":null,"abstract":"<div><p>Simulated pressurized water reactor conditions (330 °C, 15.6 MPa, ∼20 ppb oxygen) without irradiation were used to investigate the hydrothermal corrosion behavior of ultrasonic additively manufactured Zircaloy-4 up to 1000 h. X-ray computed tomography allowed for visualization of defects from processing and their progression after corrosion experiments. The specimens were found to have clear variability in the mass change data, compared to typical wrought Zircaloy-4 specimens. The variation in the mass change after exposure was attributed to weld defects connected to the specimen surface which allowed ingress of oxidant into the samples. Defects visualized by computed tomography were found via metallography and characterized. Ultrasonic additively manufactured Zircaloy-4 was found to have comparable corrosion behavior as wrought Zircaloy-4 for specimens which did not have clear surface defects along weld interfaces.</p></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002231152400477X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Simulated pressurized water reactor conditions (330 °C, 15.6 MPa, ∼20 ppb oxygen) without irradiation were used to investigate the hydrothermal corrosion behavior of ultrasonic additively manufactured Zircaloy-4 up to 1000 h. X-ray computed tomography allowed for visualization of defects from processing and their progression after corrosion experiments. The specimens were found to have clear variability in the mass change data, compared to typical wrought Zircaloy-4 specimens. The variation in the mass change after exposure was attributed to weld defects connected to the specimen surface which allowed ingress of oxidant into the samples. Defects visualized by computed tomography were found via metallography and characterized. Ultrasonic additively manufactured Zircaloy-4 was found to have comparable corrosion behavior as wrought Zircaloy-4 for specimens which did not have clear surface defects along weld interfaces.

超声波添加剂制造的 Zircaloy-4 在热液腐蚀过程中的界面稳定性
利用模拟加压水反应堆条件(330 °C, 15.6 MPa, ∼20 ppb 氧气)(无辐照)研究了超声波添加剂制造的 Zircaloy-4 长达 1000 小时的热液腐蚀行为。研究发现,与典型的锻造 Zircaloy-4 试样相比,试样的质量变化数据具有明显的差异性。暴露后质量变化的变化归因于与试样表面相连的焊接缺陷,这些缺陷导致氧化剂进入试样。通过金相术发现了计算机断层扫描所能看到的缺陷,并对其进行了表征。对于沿焊接界面没有明显表面缺陷的试样,超声波添加剂制造的 Zircaloy-4 的腐蚀性能与锻造的 Zircaloy-4 相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nuclear Materials
Journal of Nuclear Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
25.80%
发文量
601
审稿时长
63 days
期刊介绍: The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome. The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example. Topics covered by JNM Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior. Materials aspects of the entire fuel cycle. Materials aspects of the actinides and their compounds. Performance of nuclear waste materials; materials aspects of the immobilization of wastes. Fusion reactor materials, including first walls, blankets, insulators and magnets. Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties. Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信