ReflectDiffu: Reflect between Emotion-intent Contagion and Mimicry for Empathetic Response Generation via a RL-Diffusion Framework

Jiahao Yuan, Zixiang Di, Zhiqing Cui, Guisong Yang, Usman Naseem
{"title":"ReflectDiffu: Reflect between Emotion-intent Contagion and Mimicry for Empathetic Response Generation via a RL-Diffusion Framework","authors":"Jiahao Yuan, Zixiang Di, Zhiqing Cui, Guisong Yang, Usman Naseem","doi":"arxiv-2409.10289","DOIUrl":null,"url":null,"abstract":"Empathetic response generation necessitates the integration of emotional and\nintentional dynamics to foster meaningful interactions. Existing research\neither neglects the intricate interplay between emotion and intent, leading to\nsuboptimal controllability of empathy, or resorts to large language models\n(LLMs), which incur significant computational overhead. In this paper, we\nintroduce ReflectDiffu, a lightweight and comprehensive framework for\nempathetic response generation. This framework incorporates emotion contagion\nto augment emotional expressiveness and employs an emotion-reasoning mask to\npinpoint critical emotional elements. Additionally, it integrates intent\nmimicry within reinforcement learning for refinement during diffusion. By\nharnessing an intent twice reflect the mechanism of\nExploring-Sampling-Correcting, ReflectDiffu adeptly translates emotional\ndecision-making into precise intent actions, thereby addressing empathetic\nresponse misalignments stemming from emotional misrecognition. Through\nreflection, the framework maps emotional states to intents, markedly enhancing\nboth response empathy and flexibility. Comprehensive experiments reveal that\nReflectDiffu outperforms existing models regarding relevance, controllability,\nand informativeness, achieving state-of-the-art results in both automatic and\nhuman evaluations.","PeriodicalId":501479,"journal":{"name":"arXiv - CS - Artificial Intelligence","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Empathetic response generation necessitates the integration of emotional and intentional dynamics to foster meaningful interactions. Existing research either neglects the intricate interplay between emotion and intent, leading to suboptimal controllability of empathy, or resorts to large language models (LLMs), which incur significant computational overhead. In this paper, we introduce ReflectDiffu, a lightweight and comprehensive framework for empathetic response generation. This framework incorporates emotion contagion to augment emotional expressiveness and employs an emotion-reasoning mask to pinpoint critical emotional elements. Additionally, it integrates intent mimicry within reinforcement learning for refinement during diffusion. By harnessing an intent twice reflect the mechanism of Exploring-Sampling-Correcting, ReflectDiffu adeptly translates emotional decision-making into precise intent actions, thereby addressing empathetic response misalignments stemming from emotional misrecognition. Through reflection, the framework maps emotional states to intents, markedly enhancing both response empathy and flexibility. Comprehensive experiments reveal that ReflectDiffu outperforms existing models regarding relevance, controllability, and informativeness, achieving state-of-the-art results in both automatic and human evaluations.
ReflectDiffu:通过 RL-Diffusion 框架在情感意向传染和模仿之间进行反射,以生成富有同情心的反应
移情反应的生成需要整合情感和意图动态,以促进有意义的互动。现有的研究要么忽视了情感和意图之间错综复杂的相互作用,导致同理心的可控性不够理想,要么依赖于大型语言模型(LLM),从而产生了巨大的计算开销。在本文中,我们介绍了一个轻量级的综合性移情反应生成框架 ReflectDiffu。该框架结合了情感传染来增强情感表达能力,并采用情感推理掩码来指出关键的情感元素。此外,它还在强化学习中整合了意图模仿,以便在扩散过程中进行改进。通过利用意向两次反映探索-取样-纠正机制,ReflectDiffu 巧妙地将情感决策转化为精确的意向行动,从而解决了因情感识别错误而导致的移情反应失调问题。通过反思,该框架将情绪状态映射到意图上,显著增强了反应的移情性和灵活性。综合实验表明,ReflectDiffu 在相关性、可控性和信息性方面都优于现有模型,在自动评估和人工评估中都取得了最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信