On the Fourier Coefficients of Powers of a Finite Blaschke Product

Pub Date : 2024-09-17 DOI:10.1093/imrn/rnae199
Alexander Borichev, Karine Fouchet, Rachid Zarouf
{"title":"On the Fourier Coefficients of Powers of a Finite Blaschke Product","authors":"Alexander Borichev, Karine Fouchet, Rachid Zarouf","doi":"10.1093/imrn/rnae199","DOIUrl":null,"url":null,"abstract":"Given a finite Blaschke product $B$ we prove asymptotically sharp estimates on the $\\ell ^{\\infty }$-norm of the sequence of the Fourier coefficients of $B^{n}$ as $n$ tends to $\\infty $. This norm decays as $n^{-1/N}$ for some $N\\ge 3$. Furthermore, for every $N\\ge 3$, we produce explicitly a finite Blaschke product $B$ with decay $n^{-1/N}$. As an application we construct a sequence of $n\\times n$ invertible matrices $T$ with arbitrary spectrum in the unit disk and such that the quantity $|\\det{T}|\\cdot \\|T^{-1}\\|\\cdot \\|T\\|^{1-n}$ grows as a power of $n$. This is motivated by Schäffer’s question on norms of inverses.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given a finite Blaschke product $B$ we prove asymptotically sharp estimates on the $\ell ^{\infty }$-norm of the sequence of the Fourier coefficients of $B^{n}$ as $n$ tends to $\infty $. This norm decays as $n^{-1/N}$ for some $N\ge 3$. Furthermore, for every $N\ge 3$, we produce explicitly a finite Blaschke product $B$ with decay $n^{-1/N}$. As an application we construct a sequence of $n\times n$ invertible matrices $T$ with arbitrary spectrum in the unit disk and such that the quantity $|\det{T}|\cdot \|T^{-1}\|\cdot \|T\|^{1-n}$ grows as a power of $n$. This is motivated by Schäffer’s question on norms of inverses.
分享
查看原文
论有限布拉什克乘积幂的傅里叶系数
给定一个有限的布拉什克乘积$B$,当$n$趋向于$\infty $时,我们证明了关于$B^{n}$的傅里叶系数序列的$\ell ^\infty }$正则的渐近尖锐估计值。 对于某个$N\ge 3$,该正则衰减为$n^{-1/N}$。此外,对于每一个 $N\ge 3$,我们都能明确地得到一个衰减为 $n^{-1/N}$ 的有限布拉斯克乘积 $B$。作为应用,我们构造了一个 $n/times n$ 的可反矩阵 $T$ 序列,它在单位盘中具有任意频谱,并且使得数量 $|\det{T}|\cdot \|T^{-1}\|\cdot \|T\|^{1-n}$ 以 $n$ 的幂级数增长。这是由 Schäffer 提出的关于反转规范的问题引起的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信