On the Fourier Coefficients of Powers of a Finite Blaschke Product

IF 0.9 2区 数学 Q2 MATHEMATICS
Alexander Borichev, Karine Fouchet, Rachid Zarouf
{"title":"On the Fourier Coefficients of Powers of a Finite Blaschke Product","authors":"Alexander Borichev, Karine Fouchet, Rachid Zarouf","doi":"10.1093/imrn/rnae199","DOIUrl":null,"url":null,"abstract":"Given a finite Blaschke product $B$ we prove asymptotically sharp estimates on the $\\ell ^{\\infty }$-norm of the sequence of the Fourier coefficients of $B^{n}$ as $n$ tends to $\\infty $. This norm decays as $n^{-1/N}$ for some $N\\ge 3$. Furthermore, for every $N\\ge 3$, we produce explicitly a finite Blaschke product $B$ with decay $n^{-1/N}$. As an application we construct a sequence of $n\\times n$ invertible matrices $T$ with arbitrary spectrum in the unit disk and such that the quantity $|\\det{T}|\\cdot \\|T^{-1}\\|\\cdot \\|T\\|^{1-n}$ grows as a power of $n$. This is motivated by Schäffer’s question on norms of inverses.","PeriodicalId":14461,"journal":{"name":"International Mathematics Research Notices","volume":"42 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematics Research Notices","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae199","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a finite Blaschke product $B$ we prove asymptotically sharp estimates on the $\ell ^{\infty }$-norm of the sequence of the Fourier coefficients of $B^{n}$ as $n$ tends to $\infty $. This norm decays as $n^{-1/N}$ for some $N\ge 3$. Furthermore, for every $N\ge 3$, we produce explicitly a finite Blaschke product $B$ with decay $n^{-1/N}$. As an application we construct a sequence of $n\times n$ invertible matrices $T$ with arbitrary spectrum in the unit disk and such that the quantity $|\det{T}|\cdot \|T^{-1}\|\cdot \|T\|^{1-n}$ grows as a power of $n$. This is motivated by Schäffer’s question on norms of inverses.
论有限布拉什克乘积幂的傅里叶系数
给定一个有限的布拉什克乘积$B$,当$n$趋向于$\infty $时,我们证明了关于$B^{n}$的傅里叶系数序列的$\ell ^\infty }$正则的渐近尖锐估计值。 对于某个$N\ge 3$,该正则衰减为$n^{-1/N}$。此外,对于每一个 $N\ge 3$,我们都能明确地得到一个衰减为 $n^{-1/N}$ 的有限布拉斯克乘积 $B$。作为应用,我们构造了一个 $n/times n$ 的可反矩阵 $T$ 序列,它在单位盘中具有任意频谱,并且使得数量 $|\det{T}|\cdot \|T^{-1}\|\cdot \|T\|^{1-n}$ 以 $n$ 的幂级数增长。这是由 Schäffer 提出的关于反转规范的问题引起的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
316
审稿时长
1 months
期刊介绍: International Mathematics Research Notices provides very fast publication of research articles of high current interest in all areas of mathematics. All articles are fully refereed and are judged by their contribution to advancing the state of the science of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信