Investigating the effects of precise mass measurements of Ru and Pd isotopes on machine learning mass modeling

W. S. Porter, B. Liu, D. Ray, A. A. Valverde, M. Li, M. R. Mumpower, M. Brodeur, D. P. Burdette, N. Callahan, A. Cannon, J. A. Clark, D. E. M. Hoff, A. M. Houff, F. G. Kondev, A. E. Lovell, A. T. Mohan, G. E. Morgan, C. Quick, G. Savard, K. S. Sharma, T. M. Sprouse, L. Varriano
{"title":"Investigating the effects of precise mass measurements of Ru and Pd isotopes on machine learning mass modeling","authors":"W. S. Porter, B. Liu, D. Ray, A. A. Valverde, M. Li, M. R. Mumpower, M. Brodeur, D. P. Burdette, N. Callahan, A. Cannon, J. A. Clark, D. E. M. Hoff, A. M. Houff, F. G. Kondev, A. E. Lovell, A. T. Mohan, G. E. Morgan, C. Quick, G. Savard, K. S. Sharma, T. M. Sprouse, L. Varriano","doi":"arxiv-2409.12141","DOIUrl":null,"url":null,"abstract":"Atomic masses are a foundational quantity in our understanding of nuclear\nstructure, astrophysics and fundamental symmetries. The long-standing goal of\ncreating a predictive global model for the binding energy of a nucleus remains\na significant challenge, however, and prompts the need for precise measurements\nof atomic masses to serve as anchor points for model developments. We present\nprecise mass measurements of neutron-rich Ru and Pd isotopes performed at the\nCalifornium Rare Isotope Breeder Upgrade facility at Argonne National\nLaboratory using the Canadian Penning Trap mass spectrometer. The masses of\n$^{108}$Ru, $^{110}$Ru and $^{116}$Pd were measured to a relative mass\nprecision $\\delta m/m \\approx 10^{-8}$ via the phase-imaging\nion-cyclotron-resonance technique, and represent an improvement of\napproximately an order of magnitude over previous measurements. These mass data\nwere used in conjunction with the physically interpretable machine learning\n(PIML) model, which uses a mixture density neural network to model mass\nexcesses via a mixture of Gaussian distributions. The effects of our new mass\ndata on a Bayesian-updating of a PIML model are presented.","PeriodicalId":501206,"journal":{"name":"arXiv - PHYS - Nuclear Experiment","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Nuclear Experiment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Atomic masses are a foundational quantity in our understanding of nuclear structure, astrophysics and fundamental symmetries. The long-standing goal of creating a predictive global model for the binding energy of a nucleus remains a significant challenge, however, and prompts the need for precise measurements of atomic masses to serve as anchor points for model developments. We present precise mass measurements of neutron-rich Ru and Pd isotopes performed at the Californium Rare Isotope Breeder Upgrade facility at Argonne National Laboratory using the Canadian Penning Trap mass spectrometer. The masses of $^{108}$Ru, $^{110}$Ru and $^{116}$Pd were measured to a relative mass precision $\delta m/m \approx 10^{-8}$ via the phase-imaging ion-cyclotron-resonance technique, and represent an improvement of approximately an order of magnitude over previous measurements. These mass data were used in conjunction with the physically interpretable machine learning (PIML) model, which uses a mixture density neural network to model mass excesses via a mixture of Gaussian distributions. The effects of our new mass data on a Bayesian-updating of a PIML model are presented.
研究 Ru 和 Pd 同位素的精确质量测量对机器学习质量建模的影响
原子质量是我们理解核结构、天体物理学和基本对称性的基础量。然而,为原子核结合能创建一个预测性全局模型的长期目标仍然是一个重大挑战,这促使我们需要对原子质量进行精确测量,以作为模型开发的锚点。我们介绍了在阿贡国家实验室的加利福尼亚稀有同位素育种升级设施中使用加拿大潘宁陷阱质谱仪对富含中子的 Ru 和 Pd 同位素进行的精确质量测量。通过相位-成像-共振技术测量了^{108}$Ru、^{110}$Ru 和^{116}$Pd 的质量,其相对质量精度大约为 10^{-8}。这些质量数据与物理可解释机器学习(PIML)模型结合使用,该模型使用混合密度神经网络,通过高斯分布的混合来模拟质量的增加。本文介绍了新的质量数据对贝叶斯更新 PIML 模型的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信