Using Operator Inequalities in Studying the Stability of Difference Schemes for Nonlinear Boundary Value Problems with Nonlinearities of Unbounded Growth

IF 0.8 4区 数学 Q2 MATHEMATICS
P. P. Matus
{"title":"Using Operator Inequalities in Studying the Stability of Difference Schemes for Nonlinear Boundary Value Problems with Nonlinearities of Unbounded Growth","authors":"P. P. Matus","doi":"10.1134/s0012266124060089","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> The article develops the theory of stability of linear operator schemes for operator\ninequalities and nonlinear nonstationary initial–boundary value problems of mathematical physics\nwith nonlinearities of unbounded growth. Based on sufficient conditions for the stability of\nA.A. Samarskii’s two- and three-level difference schemes, the corresponding a priori estimates for\noperator inequalities are obtained under the condition of the criticality of the difference schemes\nunder consideration, i.e., when the difference solution and its first time derivative are nonnegative\nat all nodes of the grid domain. The results obtained are applied to the analysis of the stability of\ndifference schemes that approximate the Fisher and Klein–Gordon equations with nonlinear\nright-hand sides.\n</p>","PeriodicalId":50580,"journal":{"name":"Differential Equations","volume":"25 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0012266124060089","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The article develops the theory of stability of linear operator schemes for operator inequalities and nonlinear nonstationary initial–boundary value problems of mathematical physics with nonlinearities of unbounded growth. Based on sufficient conditions for the stability of A.A. Samarskii’s two- and three-level difference schemes, the corresponding a priori estimates for operator inequalities are obtained under the condition of the criticality of the difference schemes under consideration, i.e., when the difference solution and its first time derivative are nonnegative at all nodes of the grid domain. The results obtained are applied to the analysis of the stability of difference schemes that approximate the Fisher and Klein–Gordon equations with nonlinear right-hand sides.

利用算子不等式研究非线性增长非线性边界问题差分方案的稳定性
摘要 文章发展了数学物理中运算符不等式和非线性非稳态初界值问题的线性运算符方案的稳定性理论。基于萨马尔斯基(A.A. Samarskii)的两级和三级差分方案稳定性的充分条件,在所考虑的差分方案临界性条件下,即当差分解及其第一次时间导数在网格域的所有节点均为非负时,得到了算子不等式的相应先验估计。所获得的结果被用于分析近似非线性右边的费雪方程和克莱因-戈登方程的差分方案的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Differential Equations
Differential Equations 数学-数学
CiteScore
1.30
自引率
33.30%
发文量
72
审稿时长
3-8 weeks
期刊介绍: Differential Equations is a journal devoted to differential equations and the associated integral equations. The journal publishes original articles by authors from all countries and accepts manuscripts in English and Russian. The topics of the journal cover ordinary differential equations, partial differential equations, spectral theory of differential operators, integral and integral–differential equations, difference equations and their applications in control theory, mathematical modeling, shell theory, informatics, and oscillation theory. The journal is published in collaboration with the Department of Mathematics and the Division of Nanotechnologies and Information Technologies of the Russian Academy of Sciences and the Institute of Mathematics of the National Academy of Sciences of Belarus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信