A Refined Global Poincaré–Bendixson Annulus with the Limit Cycle of the Rayleigh System

Pub Date : 2024-09-19 DOI:10.1134/s0012266124060028
Y. Li, A. A. Grin, A. V. Kuzmich
{"title":"A Refined Global Poincaré–Bendixson Annulus with the Limit Cycle of the Rayleigh System","authors":"Y. Li, A. A. Grin, A. V. Kuzmich","doi":"10.1134/s0012266124060028","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> New methods for constructing two Dulac–Cherkas functions are developed using which a\nbetter, depending on the parameter <span>\\(\\lambda &gt;0\\)</span>, inner\nboundary of the Poincaré–Bendixson annulus <span>\\(A(\\lambda ) \\)</span> is found for the Rayleigh system. A procedure is\nproposed for directly finding a polynomial whose zero level set contains a transversal oval used as\nthe outer boundary of <span>\\(A(\\lambda )\\)</span>. An\ninterval for <span>\\(\\lambda \\)</span> is specified with which the best outer boundary of\nthe annulus <span>\\( A(\\lambda )\\)</span> is a closed contour composed of two\narcs of the constructed oval and two arcs of unclosed curves of the zero level set of one of the\nDulac–Cherkas functions. Thus, a refined global Poincaré–Bendixson annulus for the\nlimit cycle of the Rayleigh system is presented.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0012266124060028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

New methods for constructing two Dulac–Cherkas functions are developed using which a better, depending on the parameter \(\lambda >0\), inner boundary of the Poincaré–Bendixson annulus \(A(\lambda ) \) is found for the Rayleigh system. A procedure is proposed for directly finding a polynomial whose zero level set contains a transversal oval used as the outer boundary of \(A(\lambda )\). An interval for \(\lambda \) is specified with which the best outer boundary of the annulus \( A(\lambda )\) is a closed contour composed of two arcs of the constructed oval and two arcs of unclosed curves of the zero level set of one of the Dulac–Cherkas functions. Thus, a refined global Poincaré–Bendixson annulus for the limit cycle of the Rayleigh system is presented.

Abstract Image

分享
查看原文
具有瑞利系统极限周期的精炼全局波因卡-本迪克森环面
摘要 提出了构造两个杜拉克-切尔卡斯函数的新方法,利用这些方法,可以根据参数(((lambda >0\))为瑞利系统找到更好的Poincaré-Bendixson环面(A(\lambda ) \)的内边界。提出了一个直接找到多项式的程序,该多项式的零级集包含一个用作(A(\lambda))外边界的横向椭圆。为 \(\lambda \)指定了一个椭圆,环形 \( A(\lambda )\) 的最佳外边界是由所建椭圆的两条弧和杜拉克-切尔卡斯函数之一的零级集的未封闭曲线的两条弧组成的封闭轮廓。因此,我们提出了雷利系统极限周期的精炼全局 Poincaré-Bendixson 环面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信