Xu-Qiao Wang, Lan Du, Zhong-Kai Zhang, Ze-Jun Liu and Hao Xiang
{"title":"Leveraging the Empirical Wavelet Transform in Combination with Convolutional LSTM Neural Networks to Enhance the Accuracy of Polar Motion Prediction","authors":"Xu-Qiao Wang, Lan Du, Zhong-Kai Zhang, Ze-Jun Liu and Hao Xiang","doi":"10.1088/1674-4527/ad74dd","DOIUrl":null,"url":null,"abstract":"High-precision polar motion prediction is of great significance for deep space exploration and satellite navigation. Polar motion is affected by a variety of excitation factors, and nonlinear prediction methods are more suitable for polar motion prediction. In order to explore the effect of deep learning in polar motion prediction. This paper proposes a combined model based on empirical wavelet transform (EWT), Convolutional Neural Networks (CNN) and Long Short Term Memory (LSTM). By training and forecasting EOP 20C04 data, the effectiveness of the algorithm is verified, and the performance of two forecasting strategies in deep learning for polar motion prediction is explored. The results indicate that recursive multi-step prediction performs better than direct multi-step prediction for short-term forecasts within 15 days, while direct multi-step prediction is more suitable for medium and long-term forecasts. In the 365 days forecast, the mean absolute error of EWT-CNN-LSTM in the X direction and Y direction is 18.25 mas and 15.78 mas, respectively, which is 23.5% and 16.2% higher than the accuracy of Bulletin A. The results show that the algorithm has a good effect in medium and long term polar motion prediction.","PeriodicalId":54494,"journal":{"name":"Research in Astronomy and Astrophysics","volume":"31 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Astronomy and Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-4527/ad74dd","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
High-precision polar motion prediction is of great significance for deep space exploration and satellite navigation. Polar motion is affected by a variety of excitation factors, and nonlinear prediction methods are more suitable for polar motion prediction. In order to explore the effect of deep learning in polar motion prediction. This paper proposes a combined model based on empirical wavelet transform (EWT), Convolutional Neural Networks (CNN) and Long Short Term Memory (LSTM). By training and forecasting EOP 20C04 data, the effectiveness of the algorithm is verified, and the performance of two forecasting strategies in deep learning for polar motion prediction is explored. The results indicate that recursive multi-step prediction performs better than direct multi-step prediction for short-term forecasts within 15 days, while direct multi-step prediction is more suitable for medium and long-term forecasts. In the 365 days forecast, the mean absolute error of EWT-CNN-LSTM in the X direction and Y direction is 18.25 mas and 15.78 mas, respectively, which is 23.5% and 16.2% higher than the accuracy of Bulletin A. The results show that the algorithm has a good effect in medium and long term polar motion prediction.
期刊介绍:
Research in Astronomy and Astrophysics (RAA) is an international journal publishing original research papers and reviews across all branches of astronomy and astrophysics, with a particular interest in the following topics:
-large-scale structure of universe formation and evolution of galaxies-
high-energy and cataclysmic processes in astrophysics-
formation and evolution of stars-
astrogeodynamics-
solar magnetic activity and heliogeospace environments-
dynamics of celestial bodies in the solar system and artificial bodies-
space observation and exploration-
new astronomical techniques and methods