SFNet: Stellar Feature Network with CWT for Stellar Spectra Recognition

IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
Hao Fu, Peng Liu, Xuan Qi and Xue Mei
{"title":"SFNet: Stellar Feature Network with CWT for Stellar Spectra Recognition","authors":"Hao Fu, Peng Liu, Xuan Qi and Xue Mei","doi":"10.1088/1674-4527/ad7364","DOIUrl":null,"url":null,"abstract":"Stellar spectral classification is crucial in astronomical data analysis. However, existing studies are often limited by the uneven distribution of stellar samples, posing challenges in practical applications. Even when balancing stellar categories and their numbers, there is room for improvement in classification accuracy. This study introduces a Continuous Wavelet Transform using the Super Morlet wavelet to convert stellar spectra into wavelet images. A novel neural network, the Stellar Feature Network, is proposed for classifying these images. Stellar spectra from Large Sky Area Multi-Object Fiber Spectroscopic Telescope DR9, encompassing five equal categories (B, A, F, G, K), were used. Comparative experiments validate the effectiveness of the proposed methods and network, achieving significant improvements in classification accuracy.","PeriodicalId":54494,"journal":{"name":"Research in Astronomy and Astrophysics","volume":"15 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Astronomy and Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-4527/ad7364","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Stellar spectral classification is crucial in astronomical data analysis. However, existing studies are often limited by the uneven distribution of stellar samples, posing challenges in practical applications. Even when balancing stellar categories and their numbers, there is room for improvement in classification accuracy. This study introduces a Continuous Wavelet Transform using the Super Morlet wavelet to convert stellar spectra into wavelet images. A novel neural network, the Stellar Feature Network, is proposed for classifying these images. Stellar spectra from Large Sky Area Multi-Object Fiber Spectroscopic Telescope DR9, encompassing five equal categories (B, A, F, G, K), were used. Comparative experiments validate the effectiveness of the proposed methods and network, achieving significant improvements in classification accuracy.
SFNet:用于恒星光谱识别的带 CWT 的恒星特征网络
恒星光谱分类在天文数据分析中至关重要。然而,现有的研究往往受到恒星样本分布不均的限制,给实际应用带来了挑战。即使在平衡恒星类别及其数量的情况下,分类的准确性仍有提高的空间。本研究采用超级莫莱特小波进行连续小波变换,将恒星光谱转换成小波图像。研究还提出了一种新颖的神经网络--恒星特征网络,用于对这些图像进行分类。使用的恒星光谱来自大天区多天体光纤光谱望远镜 DR9,包括五个等同类别(B、A、F、G、K)。对比实验验证了所提方法和网络的有效性,显著提高了分类准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Research in Astronomy and Astrophysics
Research in Astronomy and Astrophysics 地学天文-天文与天体物理
CiteScore
3.20
自引率
16.70%
发文量
2599
审稿时长
6.0 months
期刊介绍: Research in Astronomy and Astrophysics (RAA) is an international journal publishing original research papers and reviews across all branches of astronomy and astrophysics, with a particular interest in the following topics: -large-scale structure of universe formation and evolution of galaxies- high-energy and cataclysmic processes in astrophysics- formation and evolution of stars- astrogeodynamics- solar magnetic activity and heliogeospace environments- dynamics of celestial bodies in the solar system and artificial bodies- space observation and exploration- new astronomical techniques and methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信