Extended Metric-Affine $f(R)$ Gravity with Dynamical Connection in Vacuum

Damianos Iosifidis
{"title":"Extended Metric-Affine $f(R)$ Gravity with Dynamical Connection in Vacuum","authors":"Damianos Iosifidis","doi":"arxiv-2409.11771","DOIUrl":null,"url":null,"abstract":"We extend the usual vacuum Metric-Affine $f(R)$ Gravity by supplementing it\nwith all parity even quadratic invariants in torsion and non-metricity. As we\nshow explicitly this supplementation drastically changes the status of the\nTheory which now propagates an additional scalar degree of freedom on top of\nthe graviton. This scalar degree of freedom has a geometric origin as it\nrelates to spacetime torsion and non-metricity. The resulting Theory can be\nwritten equivalently as a metric and torsionless Scalar-Tensor Theory whose\npotential and kinetic term coupling depend on the choice of the function $f(R)$\nand the dimensionless parameters of the quadratic invariants respectively.","PeriodicalId":501339,"journal":{"name":"arXiv - PHYS - High Energy Physics - Theory","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We extend the usual vacuum Metric-Affine $f(R)$ Gravity by supplementing it with all parity even quadratic invariants in torsion and non-metricity. As we show explicitly this supplementation drastically changes the status of the Theory which now propagates an additional scalar degree of freedom on top of the graviton. This scalar degree of freedom has a geometric origin as it relates to spacetime torsion and non-metricity. The resulting Theory can be written equivalently as a metric and torsionless Scalar-Tensor Theory whose potential and kinetic term coupling depend on the choice of the function $f(R)$ and the dimensionless parameters of the quadratic invariants respectively.
具有真空动态连接的扩展公元-阿芬$f(R)$引力
我们扩展了通常的真空公设-非公设 $f(R)$引力,为其补充了扭转和非公设的所有奇偶二次不变式。我们可以清楚地看到,这种补充极大地改变了理论的状态,现在它在引力子之上传播了一个额外的标量自由度。这个标量自由度与时空扭转和非度量有关,因此具有几何起源。由此产生的理论可以等价地写成一个度量和无扭的标量张量理论,它的势项和动项耦合分别取决于函数$f(R)$和二次不变式的无量纲参数的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信