Fixed Points of Quantum Gravity from Dimensional Regularisation

Yannick Kluth
{"title":"Fixed Points of Quantum Gravity from Dimensional Regularisation","authors":"Yannick Kluth","doi":"arxiv-2409.09252","DOIUrl":null,"url":null,"abstract":"We investigate $\\beta$-functions of quantum gravity using dimensional\nregularisation. In contrast to minimal subtraction, a non-minimal\nrenormalisation scheme is employed which is sensitive to power-law divergences\nfrom mass terms or dimensionful couplings. By construction, this setup respects\nglobal and gauge symmetries, including diffeomorphisms, and allows for\nsystematic extensions to higher loop orders. We exemplify this approach in the\ncontext of four-dimensional quantum gravity. By computing one-loop\n$\\beta$-functions, we find a non-trivial fixed point. It shows two real\ncritical exponents and is compatible with Weinberg's asymptotic safety\nscenario. Moreover, the underlying structure of divergences suggests that\ngravity becomes, effectively, two-dimensional in the ultraviolet. We discuss\nthe significance of our results as well as further applications and extensions\nto higher loop orders.","PeriodicalId":501339,"journal":{"name":"arXiv - PHYS - High Energy Physics - Theory","volume":"229 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate $\beta$-functions of quantum gravity using dimensional regularisation. In contrast to minimal subtraction, a non-minimal renormalisation scheme is employed which is sensitive to power-law divergences from mass terms or dimensionful couplings. By construction, this setup respects global and gauge symmetries, including diffeomorphisms, and allows for systematic extensions to higher loop orders. We exemplify this approach in the context of four-dimensional quantum gravity. By computing one-loop $\beta$-functions, we find a non-trivial fixed point. It shows two real critical exponents and is compatible with Weinberg's asymptotic safety scenario. Moreover, the underlying structure of divergences suggests that gravity becomes, effectively, two-dimensional in the ultraviolet. We discuss the significance of our results as well as further applications and extensions to higher loop orders.
从维度正规化看量子引力的定点
我们利用维度正则化研究量子引力的 $\beta$ 函数。与最小减法相反,我们采用了一种非最小正则化方案,它对来自质量项或维度耦合的幂律发散很敏感。通过构造,这种设置尊重全局对称性和规对称性,包括差分对称性,并允许系统扩展到更高的环阶。我们以四维量子引力为例说明这种方法。通过计算一环(one-loop)$\beta$函数,我们发现了一个非难定点。它显示了两个实临界指数,并与温伯格的渐近安全假设相兼容。此外,发散的基本结构表明,引力在紫外实际上变成了二维引力。我们讨论了我们结果的意义以及进一步的应用和向更高环阶的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信