The dynamics of spherically symmetric black holes in scalar-Gauss-Bonnet gravity with a Ricci coupling

Farid Thaalba, Nicola Franchini, Miguel Bezares, Thomas P. Sotiriou
{"title":"The dynamics of spherically symmetric black holes in scalar-Gauss-Bonnet gravity with a Ricci coupling","authors":"Farid Thaalba, Nicola Franchini, Miguel Bezares, Thomas P. Sotiriou","doi":"arxiv-2409.11398","DOIUrl":null,"url":null,"abstract":"We study the dynamics of spherically symmetric black holes in scalar\nGauss-Bonnet gravity with an additional coupling between the scalar field and\nthe Ricci scalar using non-linear simulations that employ excision. In this\nclass of theories, black holes possess hair if they lie in a specific mass\nrange, in which case they exhibit a finite-area singularity, unlike general\nrelativity. Our results show that the Ricci coupling can mitigate the loss of\nhyperbolicity in spherical evolution with black hole initial data. Using\nexcision can enlarge the parameter space for which the system remains\nwell-posed, as one can excise the elliptic region that forms inside the\nhorizon. Furthermore, we explore a possible relation between the loss of\nhyperbolicity and the formation of the finite-area singularity inside the\nhorizon. We find that the location of the singularity extracted from the static\nanalysis matches the location of the sonic line well. Finally, when possible,\nwe extract the monopolar quasi-normal modes and the time scale of the linear\ntachyonic instability associated with scalarization. We also check our results\nby utilizing a continued fraction analysis and supposing linear perturbations\nof the static solutions.","PeriodicalId":501339,"journal":{"name":"arXiv - PHYS - High Energy Physics - Theory","volume":"48 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the dynamics of spherically symmetric black holes in scalar Gauss-Bonnet gravity with an additional coupling between the scalar field and the Ricci scalar using non-linear simulations that employ excision. In this class of theories, black holes possess hair if they lie in a specific mass range, in which case they exhibit a finite-area singularity, unlike general relativity. Our results show that the Ricci coupling can mitigate the loss of hyperbolicity in spherical evolution with black hole initial data. Using excision can enlarge the parameter space for which the system remains well-posed, as one can excise the elliptic region that forms inside the horizon. Furthermore, we explore a possible relation between the loss of hyperbolicity and the formation of the finite-area singularity inside the horizon. We find that the location of the singularity extracted from the static analysis matches the location of the sonic line well. Finally, when possible, we extract the monopolar quasi-normal modes and the time scale of the linear tachyonic instability associated with scalarization. We also check our results by utilizing a continued fraction analysis and supposing linear perturbations of the static solutions.
具有里奇耦合的标量-高斯-波奈引力中球面对称黑洞的动力学
我们利用非线性模拟,采用切除法研究了标量高斯-波奈引力中球面对称黑洞的动力学,标量场和利玛窦标量之间存在额外的耦合。在这一类理论中,如果黑洞位于特定的质量范围内,它们就会拥有发丝,在这种情况下,它们会表现出有限面积奇点,这与广义相对论不同。我们的研究结果表明,里奇耦合可以减轻黑洞初始数据在球形演化中的双曲性损失。利用切除可以扩大系统保持良好方程的参数空间,因为我们可以切除在地平线内形成的椭圆区域。此外,我们还探讨了失去双曲性与在地平线内形成有限面积奇点之间的可能关系。我们发现,从静态分析中提取的奇点位置与声波线的位置非常吻合。最后,在可能的情况下,我们提取了与标量化相关的单极准正常模式和线性不稳定性的时间尺度。我们还利用续分分析和假设静态解的线性扰动来检验我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信