UV complete local field theory of persistent symmetry breaking in 2+1 dimensions

Bilal Hawashin, Junchen Rong, Michael M. Scherer
{"title":"UV complete local field theory of persistent symmetry breaking in 2+1 dimensions","authors":"Bilal Hawashin, Junchen Rong, Michael M. Scherer","doi":"arxiv-2409.10606","DOIUrl":null,"url":null,"abstract":"Spontaneous symmetry breaking can persist at all temperatures in certain\nbiconical $\\mathrm{O}(N)\\times \\mathbb{Z}_2$ vector models when the underlying\nfield theories are ultraviolet complete. So far, the existence of such theories\nhas been established in fractional dimensions for local but nonunitary models\nor in 2+1 dimensions but for nonlocal models. Here, we study local models at\nzero and finite temperature directly in 2+1 dimensions employing functional\nmethods. At zero temperature, we establish that our approach describes the\nquantum critical behaviour with high accuracy for all $N\\geq 2$. We then\nexhibit the mechanism of discrete symmetry breaking from $\\mathrm{O}(N)\\times\n\\mathbb{Z}_2\\to \\mathrm{O}(N)$ for increasing temperature near the biconical\ncritical point when $N$ is finite but large. We calculate the corresponding\nfinite-temperature phase diagram and further show that the\nHohenberg-Mermin-Wagner theorem is fully respected within this approach, i.e.,\nsymmetry breaking only occurs in the $\\mathbb{Z}_2$ sector. Finally, we\ndetermine the critical $N$ above which this phenomenon can be observed to be\n$N_c \\approx 15$.","PeriodicalId":501339,"journal":{"name":"arXiv - PHYS - High Energy Physics - Theory","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spontaneous symmetry breaking can persist at all temperatures in certain biconical $\mathrm{O}(N)\times \mathbb{Z}_2$ vector models when the underlying field theories are ultraviolet complete. So far, the existence of such theories has been established in fractional dimensions for local but nonunitary models or in 2+1 dimensions but for nonlocal models. Here, we study local models at zero and finite temperature directly in 2+1 dimensions employing functional methods. At zero temperature, we establish that our approach describes the quantum critical behaviour with high accuracy for all $N\geq 2$. We then exhibit the mechanism of discrete symmetry breaking from $\mathrm{O}(N)\times \mathbb{Z}_2\to \mathrm{O}(N)$ for increasing temperature near the biconical critical point when $N$ is finite but large. We calculate the corresponding finite-temperature phase diagram and further show that the Hohenberg-Mermin-Wagner theorem is fully respected within this approach, i.e., symmetry breaking only occurs in the $\mathbb{Z}_2$ sector. Finally, we determine the critical $N$ above which this phenomenon can be observed to be $N_c \approx 15$.
2+1 维持久对称破缺的紫外完整局域场理论
当底层场理论是紫外完全的时候,自发对称破缺可以在某些双向$mathrm{O}(N)\times \mathbb{Z}_2$矢量模型的所有温度下持续存在。到目前为止,这种理论的存在已经在分数维度的局部但非单元模型,或者在2+1维度的非局部模型中得到了证实。在这里,我们采用函数方法直接在 2+1 维中研究零温度和有限温度下的局部模型。在零温度下,我们证明我们的方法可以高精度地描述所有 $N\geq 2$ 的量子临界行为。我们还展示了当 $N$ 有限但较大时,在双临界点附近温度升高时,从 $\mathrm{O}(N)\times\mathbb{Z}_2\ 到 \mathrm{O}(N)$ 的离散对称性破缺机制。我们计算了相应的有限温度相图,并进一步证明在这种方法中完全遵守了霍恩伯格-梅明-瓦格纳定理,即对称性破缺只发生在 $\mathbb{Z}_2$ 部门。最后,我们确定了观察到这一现象的临界值$N$为$N_c (约15$)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信