The random free field scalar theory

Alessandro Piazza, Marco Serone, Emilio Trevisani
{"title":"The random free field scalar theory","authors":"Alessandro Piazza, Marco Serone, Emilio Trevisani","doi":"arxiv-2409.10608","DOIUrl":null,"url":null,"abstract":"Quantum field theories with quenched disorder are so hard to study that even\nexactly solvable free theories present puzzling aspects. We consider a free\nscalar field $\\phi$ in $d$ dimensions coupled to a random source $h$ with\nquenched disorder. Despite the presence of a mass scale governing the disorder\ndistribution, we derive a new description of the theory that allows us to show\nthat the theory is gapless and invariant under conformal symmetry, which acts\nin a non-trivial way on $\\phi$ and $h$. This manifest CFT description reveals\nthe presence of exotic continuous symmetries, such as nilpotent bosonic ones,\nin the quenched theory. We also reconsider Cardy's CFT description defined\nthrough the replica trick. In this description, the nilpotent symmetries reveal\na striking resemblance with Parisi-Sourlas supersymmetries. We provide explicit\nmaps of correlation functions between such CFTs and the original quenched\ntheory. The maps are non-trivial and show that conformal behaviour is manifest\nonly when considering suitable linear combinations of averages of products of\ncorrelators. We also briefly discuss how familiar notions like normal ordering\nof composite operators and OPE can be generalized in the presence of the more\ncomplicated local observables in the quenched theory.","PeriodicalId":501339,"journal":{"name":"arXiv - PHYS - High Energy Physics - Theory","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum field theories with quenched disorder are so hard to study that even exactly solvable free theories present puzzling aspects. We consider a free scalar field $\phi$ in $d$ dimensions coupled to a random source $h$ with quenched disorder. Despite the presence of a mass scale governing the disorder distribution, we derive a new description of the theory that allows us to show that the theory is gapless and invariant under conformal symmetry, which acts in a non-trivial way on $\phi$ and $h$. This manifest CFT description reveals the presence of exotic continuous symmetries, such as nilpotent bosonic ones, in the quenched theory. We also reconsider Cardy's CFT description defined through the replica trick. In this description, the nilpotent symmetries reveal a striking resemblance with Parisi-Sourlas supersymmetries. We provide explicit maps of correlation functions between such CFTs and the original quenched theory. The maps are non-trivial and show that conformal behaviour is manifest only when considering suitable linear combinations of averages of products of correlators. We also briefly discuss how familiar notions like normal ordering of composite operators and OPE can be generalized in the presence of the more complicated local observables in the quenched theory.
随机自由场标量理论
具有淬火无序性的量子场论是很难研究的,即使是精确可解的自由理论也会有令人费解的地方。我们考虑了一个在$d$维度上与具有淬火无序性的随机源$h$耦合的自由弧场$\phi$。尽管存在着支配无序分布的质量尺度,我们还是得出了对该理论的新描述,使我们能够证明该理论在共形对称性下是无间隙和不变的,而共形对称性以一种非三维的方式作用于$\phi$和$h$。这种显式 CFT 描述揭示了淬火理论中存在奇异的连续对称性,如零势玻色对称性。我们还重新考虑了卡迪通过复制技巧定义的 CFT 描述。在这种描述中,零势对称性与帕里西-索拉斯超对称性惊人地相似。我们提供了这种 CFT 与原始淬火理论之间相关函数的明确映射。这些映射是非微观的,并表明当考虑到相关函数乘积的平均值的合适线性组合时,共形行为是明显的。我们还简要讨论了在淬火理论中存在更复杂的局域观测量的情况下,如何对复合算子的正序化和 OPE 等熟悉的概念进行概括。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信