Non-Invertible T-duality at Any Radius via Non-Compact SymTFT

Riccardo Argurio, Andrés Collinucci, Giovanni Galati, Ondrej Hulik, Elise Paznokas
{"title":"Non-Invertible T-duality at Any Radius via Non-Compact SymTFT","authors":"Riccardo Argurio, Andrés Collinucci, Giovanni Galati, Ondrej Hulik, Elise Paznokas","doi":"arxiv-2409.11822","DOIUrl":null,"url":null,"abstract":"We extend the construction of the T-duality symmetry for the 2d compact boson\nto arbitrary values of the radius by including topological manipulations such\nas gauging continuous symmetries with flat connections. We show that the entire\ncircle branch of the $c=1$ conformal manifold can be generated using these\nmanipulations, resulting in a non-invertible T-duality symmetry when the\ngauging sends the radius to its inverse value. Using the recently proposed\nsymmetry TFT describing continuous global symmetries of the boundary theory, we\nidentify the topological operator corresponding to these new T-duality\nsymmetries as an open condensation defect of the bulk theory, constructed by\n(higher) gauging an $\\mathbb{R}$ subgroup of the bulk global symmetries.\nNotably, when the boundary theory is the compact boson with a rational square\nradius, this operator reduces to the familiar T-duality defect described by a\nTambara-Yamagami fusion category. This construction thus naturally includes all\npossible discrete T-duality symmetries of the theory in a unified way.","PeriodicalId":501339,"journal":{"name":"arXiv - PHYS - High Energy Physics - Theory","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We extend the construction of the T-duality symmetry for the 2d compact boson to arbitrary values of the radius by including topological manipulations such as gauging continuous symmetries with flat connections. We show that the entire circle branch of the $c=1$ conformal manifold can be generated using these manipulations, resulting in a non-invertible T-duality symmetry when the gauging sends the radius to its inverse value. Using the recently proposed symmetry TFT describing continuous global symmetries of the boundary theory, we identify the topological operator corresponding to these new T-duality symmetries as an open condensation defect of the bulk theory, constructed by (higher) gauging an $\mathbb{R}$ subgroup of the bulk global symmetries. Notably, when the boundary theory is the compact boson with a rational square radius, this operator reduces to the familiar T-duality defect described by a Tambara-Yamagami fusion category. This construction thus naturally includes all possible discrete T-duality symmetries of the theory in a unified way.
通过非紧凑 SymTFT 实现任意半径处的非不可逆 T 对偶性
我们将二维紧凑玻色T对偶对称性的构造扩展到任意半径值,包括拓扑操作,如用平面连接测量连续对称性。我们证明,利用这些操作可以生成$c=1$共形流形的整个圆分支,当测量将半径发送到它的逆值时,就会产生不可逆转的T对偶对称性。利用最近提出的描述边界理论连续全局对称性的对称性TFT,我们把对应于这些新的T对偶对称性的拓扑算子识别为体量理论的开放凝聚缺陷,它是通过对体量全局对称性的一个$\mathbb{R}$子群进行(高)测量而构造的。值得注意的是,当边界理论是具有有理平方半径的紧凑玻色子时,这个算子就还原为我们熟悉的由坦巴拉-山神融合范畴描述的T对偶缺陷。因此,这种构造自然而然地以统一的方式包含了理论中所有可能的离散 T 对偶对称性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信