Asymptotic Higher Spin Symmetries I: Covariant Wedge Algebra in Gravity

Nicolas Cresto, Laurent Freidel
{"title":"Asymptotic Higher Spin Symmetries I: Covariant Wedge Algebra in Gravity","authors":"Nicolas Cresto, Laurent Freidel","doi":"arxiv-2409.12178","DOIUrl":null,"url":null,"abstract":"In this paper, we study gravitational symmetry algebras that live on\n2-dimensional cuts $S$ of asymptotic infinity. We define a notion of wedge\nalgebra $\\mathcal{W}(S)$ which depends on the topology of $S$. For the cylinder\n$S=\\mathbb{C}^*$ we recover the celebrated $Lw_{1+\\infty}$ algebra. For the\n2-sphere $S^2$, the wedge algebra reduces to a central extension of the\nanti-self-dual projection of the Poincar\\'e algebra. We then extend\n$\\mathcal{W}(S)$ outside of the wedge space and build a new Lie algebra\n$\\mathcal{W}_\\sigma(S)$, which can be viewed as a deformation of the wedge\nalgebra by a spin two field $\\sigma$ playing the role of the shear at a cut of\n$\\mathscr{I}$. This algebra represents the gravitational symmetry algebra in\nthe presence of a non trivial shear and is characterized by a covariantized\nversion of the wedge condition. Finally, we construct a dressing map that\nprovides a Lie algebra isomorphism between the covariant and regular wedge\nalgebras.","PeriodicalId":501339,"journal":{"name":"arXiv - PHYS - High Energy Physics - Theory","volume":"100 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study gravitational symmetry algebras that live on 2-dimensional cuts $S$ of asymptotic infinity. We define a notion of wedge algebra $\mathcal{W}(S)$ which depends on the topology of $S$. For the cylinder $S=\mathbb{C}^*$ we recover the celebrated $Lw_{1+\infty}$ algebra. For the 2-sphere $S^2$, the wedge algebra reduces to a central extension of the anti-self-dual projection of the Poincar\'e algebra. We then extend $\mathcal{W}(S)$ outside of the wedge space and build a new Lie algebra $\mathcal{W}_\sigma(S)$, which can be viewed as a deformation of the wedge algebra by a spin two field $\sigma$ playing the role of the shear at a cut of $\mathscr{I}$. This algebra represents the gravitational symmetry algebra in the presence of a non trivial shear and is characterized by a covariantized version of the wedge condition. Finally, we construct a dressing map that provides a Lie algebra isomorphism between the covariant and regular wedge algebras.
渐近高自旋对称性 I:引力中的协变楔形代数
在本文中,我们研究生活在渐近无穷的 2 维切口 $S$ 上的引力对称性代数。我们定义了楔代数 $\mathcal{W}(S)$ 的概念,它取决于 $S$ 的拓扑结构。对于圆柱体$S=\mathbb{C}^*$,我们恢复了著名的$Lw_{1+\infty}$代数。对于2球$S^2$,楔形代数简化为 Poincar\'e 代数的反自双投影的中心扩展。然后,我们将$\mathcal{W}(S)$ 扩展到楔形空间之外,并建立了一个新的李代数$\mathcal{W}_\sigma(S)$,它可以被看作是楔形代数的变形,由一个自旋二场$\sigma$ 在$\mathscr{I}$ 的切口处扮演剪切的角色。这个代数代表了存在非三剪切时的引力对称代数,并以楔形条件的共变版本为特征。最后,我们构建了一个敷料映射,它提供了共变楔代数与正则楔代数之间的李代数同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信