Minimum Plane Bichromatic Spanning Trees

Hugo A. Akitaya, Ahmad Biniaz, Erik D. Demaine, Linda Kleist, Frederick Stock, Csaba D. Tóth
{"title":"Minimum Plane Bichromatic Spanning Trees","authors":"Hugo A. Akitaya, Ahmad Biniaz, Erik D. Demaine, Linda Kleist, Frederick Stock, Csaba D. Tóth","doi":"arxiv-2409.11614","DOIUrl":null,"url":null,"abstract":"For a set of red and blue points in the plane, a minimum bichromatic spanning\ntree (MinBST) is a shortest spanning tree of the points such that every edge\nhas a red and a blue endpoint. A MinBST can be computed in $O(n\\log n)$ time\nwhere $n$ is the number of points. In contrast to the standard Euclidean MST,\nwhich is always plane (noncrossing), a MinBST may have edges that cross each\nother. However, we prove that a MinBST is quasi-plane, that is, it does not\ncontain three pairwise crossing edges, and we determine the maximum number of\ncrossings. Moreover, we study the problem of finding a minimum plane bichromatic\nspanning tree (MinPBST) which is a shortest bichromatic spanning tree with\npairwise noncrossing edges. This problem is known to be NP-hard. The previous\nbest approximation algorithm, due to Borgelt et al. (2009), has a ratio of\n$O(\\sqrt{n})$. It is also known that the optimum solution can be computed in\npolynomial time in some special cases, for instance, when the points are in\nconvex position, collinear, semi-collinear, or when one color class has\nconstant size. We present an $O(\\log n)$-factor approximation algorithm for the\ngeneral case.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For a set of red and blue points in the plane, a minimum bichromatic spanning tree (MinBST) is a shortest spanning tree of the points such that every edge has a red and a blue endpoint. A MinBST can be computed in $O(n\log n)$ time where $n$ is the number of points. In contrast to the standard Euclidean MST, which is always plane (noncrossing), a MinBST may have edges that cross each other. However, we prove that a MinBST is quasi-plane, that is, it does not contain three pairwise crossing edges, and we determine the maximum number of crossings. Moreover, we study the problem of finding a minimum plane bichromatic spanning tree (MinPBST) which is a shortest bichromatic spanning tree with pairwise noncrossing edges. This problem is known to be NP-hard. The previous best approximation algorithm, due to Borgelt et al. (2009), has a ratio of $O(\sqrt{n})$. It is also known that the optimum solution can be computed in polynomial time in some special cases, for instance, when the points are in convex position, collinear, semi-collinear, or when one color class has constant size. We present an $O(\log n)$-factor approximation algorithm for the general case.
最小平面双色生成树
对于平面上的一组红色和蓝色点,最小双色生成树(MinBST)是这些点的一棵最短生成树,使得每条边都有一个红色端点和一个蓝色端点。MinBST 的计算时间为 $O(n/log n)$,其中 $n$ 为点的个数。与总是平面(无交叉)的标准欧氏 MST 相比,MinBST 可能有相互交叉的边。但是,我们证明 MinBST 是准平面的,也就是说,它不包含三条成对交叉的边,并且我们确定了交叉的最大数量。此外,我们还研究了寻找最小平面双色生成树(MinPBST)的问题,它是具有成对非交叉边的最短双色生成树。众所周知,这个问题很难解决。Borgelt 等人(2009 年)提出的先前最佳近似算法的比率为 $O(\sqrt{n})$。我们还知道,在一些特殊情况下,例如,当点的位置不凸、共线、半共线,或者当一个颜色类的大小恒定时,可以在多项式时间内计算出最优解。我们提出了一种针对一般情况的 $O(\log n)$ 因子近似算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信