Spherical Logvinenko–Sereda–Kovrijkine type inequality and null-controllability of the heat equation on the sphere

IF 0.5 4区 数学 Q3 MATHEMATICS
Alexander Dicke, Ivan Veselić
{"title":"Spherical Logvinenko–Sereda–Kovrijkine type inequality and null-controllability of the heat equation on the sphere","authors":"Alexander Dicke,&nbsp;Ivan Veselić","doi":"10.1007/s00013-024-02051-4","DOIUrl":null,"url":null,"abstract":"<div><p>It is shown that the restriction of a polynomial to a sphere satisfies a Logvinenko–Sereda–Kovrijkine type inequality (a specific type of uncertainty relation). This implies a spectral inequality for the Laplace–Beltrami operator, which, in turn, yields observability and null-controllability with explicit estimates on the control costs for the spherical heat equation that are sharp in the large and in the small time regime.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"123 5","pages":"543 - 556"},"PeriodicalIF":0.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-024-02051-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02051-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

It is shown that the restriction of a polynomial to a sphere satisfies a Logvinenko–Sereda–Kovrijkine type inequality (a specific type of uncertainty relation). This implies a spectral inequality for the Laplace–Beltrami operator, which, in turn, yields observability and null-controllability with explicit estimates on the control costs for the spherical heat equation that are sharp in the large and in the small time regime.

球面罗格维年科-塞雷达-科夫里金式不等式和球面热方程的无效可控性
研究表明,多项式对球面的限制满足 Logvinenko-Sereda-Kovrijkine 型不等式(一种特定类型的不确定性关系)。这意味着拉普拉斯-贝尔特拉米算子的谱不等式,进而产生球面热方程的可观测性和空可控性,以及控制成本的明确估计值,这些估计值在大时间和小时间范围内都很尖锐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信