The canonical trace of determinantal rings

IF 0.5 4区 数学 Q3 MATHEMATICS
Antonino Ficarra, Jürgen Herzog, Dumitru I. Stamate, Vijaylaxmi Trivedi
{"title":"The canonical trace of determinantal rings","authors":"Antonino Ficarra,&nbsp;Jürgen Herzog,&nbsp;Dumitru I. Stamate,&nbsp;Vijaylaxmi Trivedi","doi":"10.1007/s00013-024-02047-0","DOIUrl":null,"url":null,"abstract":"<div><p>We compute the canonical trace of generic determinantal rings and provide a sufficient condition for the trace to specialize. As an application, we determine the canonical trace <span>\\(tr (\\omega _R)\\)</span> of a Cohen–Macaulay ring <i>R</i> of codimension two, which is generically Gorenstein. It is shown that if the defining ideal <i>I</i> of <i>R</i> is generated by <i>n</i> elements, then <span>\\(tr (\\omega _R)\\)</span> is generated by the <span>\\((n-2)\\)</span>-minors of the Hilbert–Burch matrix of <i>I</i>.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"123 5","pages":"487 - 497"},"PeriodicalIF":0.5000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02047-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We compute the canonical trace of generic determinantal rings and provide a sufficient condition for the trace to specialize. As an application, we determine the canonical trace \(tr (\omega _R)\) of a Cohen–Macaulay ring R of codimension two, which is generically Gorenstein. It is shown that if the defining ideal I of R is generated by n elements, then \(tr (\omega _R)\) is generated by the \((n-2)\)-minors of the Hilbert–Burch matrix of I.

Abstract Image

行列式环的典型痕量
我们计算了一般行列式环的典型迹,并提供了迹特殊化的充分条件。作为应用,我们确定了一般为戈伦斯坦的二维科恩-麦考莱环 R 的典型迹 \(tr (\omega _R)\)。研究表明,如果 R 的定义理想 I 由 n 个元素生成,那么 \(tr (\omega _R)\) 是由 I 的希尔伯特-伯奇矩阵的 \((n-2)\)-最小值生成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信