Atomic Norm Minimization-based DoA Estimation for IRS-assisted Sensing Systems

Renwang Li, Shu Sun, Meixia Tao
{"title":"Atomic Norm Minimization-based DoA Estimation for IRS-assisted Sensing Systems","authors":"Renwang Li, Shu Sun, Meixia Tao","doi":"arxiv-2409.09982","DOIUrl":null,"url":null,"abstract":"Intelligent reflecting surface (IRS) is expected to play a pivotal role in\nfuture wireless sensing networks owing to its potential for high-resolution and\nhigh-accuracy sensing. In this work, we investigate a multi-target\ndirection-of-arrival (DoA) estimation problem in a semi-passive IRS-assisted\nsensing system, where IRS reflecting elements (REs) reflect signals from the\nbase station to targets, and IRS sensing elements (SEs) estimate DoA based on\necho signals reflected by the targets. {First of all, instead of solely relying\non IRS SEs for DoA estimation as done in the existing literature, this work\nfully exploits the DoA information embedded in both IRS REs and SEs matrices\nvia the atomic norm minimization (ANM) scheme. Subsequently, the Cram\\'er-Rao\nbound for DoA estimation is derived, revealing an inverse proportionality to\n$MN^3+NM^3$ under the case of identity covariance matrix of the IRS measurement\nmatrix and a single target, where $M$ and $N$ are the number of IRS SEs and\nREs, respectively. Finally, extensive numerical results substantiate the\nsuperior accuracy and resolution performance of the proposed ANM-based DoA\nestimation method over representative baselines.","PeriodicalId":501034,"journal":{"name":"arXiv - EE - Signal Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Intelligent reflecting surface (IRS) is expected to play a pivotal role in future wireless sensing networks owing to its potential for high-resolution and high-accuracy sensing. In this work, we investigate a multi-target direction-of-arrival (DoA) estimation problem in a semi-passive IRS-assisted sensing system, where IRS reflecting elements (REs) reflect signals from the base station to targets, and IRS sensing elements (SEs) estimate DoA based on echo signals reflected by the targets. {First of all, instead of solely relying on IRS SEs for DoA estimation as done in the existing literature, this work fully exploits the DoA information embedded in both IRS REs and SEs matrices via the atomic norm minimization (ANM) scheme. Subsequently, the Cram\'er-Rao bound for DoA estimation is derived, revealing an inverse proportionality to $MN^3+NM^3$ under the case of identity covariance matrix of the IRS measurement matrix and a single target, where $M$ and $N$ are the number of IRS SEs and REs, respectively. Finally, extensive numerical results substantiate the superior accuracy and resolution performance of the proposed ANM-based DoA estimation method over representative baselines.
基于原子规范最小化的 IRS 辅助传感系统 DoA 估计
智能反射面(IRS)具有高分辨率和高精度传感的潜力,因此有望在未来的无线传感网络中发挥关键作用。在这项工作中,我们研究了半被动 IRS 辅助传感系统中的多目标到达方向(DoA)估计问题,其中 IRS 反射元件(RE)将信号从基站反射到目标,IRS 传感元件(SE)根据目标反射的信号估计 DoA。{首先,这项工作并不像现有文献那样仅仅依靠 IRS SEs 来估计 DoA,而是通过原子规范最小化(ANM)方案,有效地利用了嵌入在 IRS REs 和 SEs 矩阵中的 DoA 信息。随后,推导出了 DoA 估计的 Cram\'er-Raobound ,揭示了在 IRS 测量矩阵的同方差矩阵和单一目标的情况下,与 $MN^3+NM^3$ 的反比例关系,其中 $M$ 和 $N$ 分别是 IRS SE 和 RE 的数量。最后,大量的数值结果证明了基于 ANM 的 DoAestimation 方法比有代表性的基线方法具有更高的精度和分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信