Fast Structured Orthogonal Dictionary Learning using Householder Reflections

Anirudh Dash, Aditya Siripuram
{"title":"Fast Structured Orthogonal Dictionary Learning using Householder Reflections","authors":"Anirudh Dash, Aditya Siripuram","doi":"arxiv-2409.09138","DOIUrl":null,"url":null,"abstract":"In this paper, we propose and investigate algorithms for the structured\northogonal dictionary learning problem. First, we investigate the case when the\ndictionary is a Householder matrix. We give sample complexity results and show\ntheoretically guaranteed approximate recovery (in the $l_{\\infty}$ sense) with\noptimal computational complexity. We then attempt to generalize these\ntechniques when the dictionary is a product of a few Householder matrices. We\nnumerically validate these techniques in the sample-limited setting to show\nperformance similar to or better than existing techniques while having much\nimproved computational complexity.","PeriodicalId":501034,"journal":{"name":"arXiv - EE - Signal Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose and investigate algorithms for the structured orthogonal dictionary learning problem. First, we investigate the case when the dictionary is a Householder matrix. We give sample complexity results and show theoretically guaranteed approximate recovery (in the $l_{\infty}$ sense) with optimal computational complexity. We then attempt to generalize these techniques when the dictionary is a product of a few Householder matrices. We numerically validate these techniques in the sample-limited setting to show performance similar to or better than existing techniques while having much improved computational complexity.
利用豪斯顿反射进行快速结构化正交字典学习
本文提出并研究了结构化正交字典学习问题的算法。首先,我们研究了当字典是一个 Householder 矩阵时的情况。我们给出了样本复杂度结果,并展示了具有最佳计算复杂度的理论保证近似恢复(在 $l_{\infty}$ 意义上)。然后,当字典是几个豪斯矩阵的乘积时,我们尝试推广这些技术。我们在样本有限的环境中对这些技术进行了数值验证,结果表明其性能与现有技术相近或更好,同时计算复杂度也大大提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信